Use of mechanistic information to evaluate the hazard and predict health effects of replacement flame retardants.

Lola Bajard, Ludek Blaha, Lisa Melymuk

Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic

CHE Webinar, June 20

science and policy for a healthy future

Flame retardants (FRs)

- Added to materials to delay flammability.
- Broadly detected, particularly in dusts and also in human matrices
- People presumably chronically exposed

https://www.ewg.org/enviroblog/2016/08/flame-retardants-why-they-re-our-homes-and-how-avoid-them the standard standard

$\texttt{MUNI} \mid \texttt{RECETOX}$

Replacement FRs

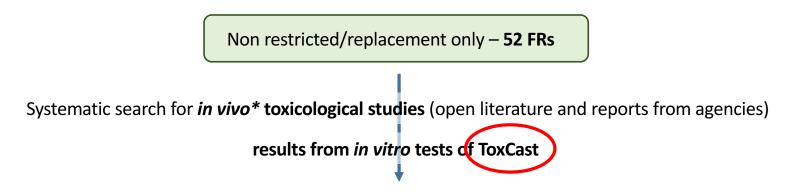
Since the years 2000, the long used PBDEs and HBCDD have been restricted, and **100s of diverse chemicals are used as replacement**

62 FRs preselected by experts from HBM4EU* - we focus on replacement (non restricted) : 52 FRs

evaluate their hazard, identify their mechanisms of toxicity.

*hbm4eu scoping document - <u>https://www.hbm4eu.eu/mdocs-posts/scoping-documents-for-2018/</u> PBDEs: Polybrominated diphenyl ethers; HBCDD: hexabromocyclododecane

Importance of mechanistic information


62 FRs preselected by experts from HBM4EU* - we focus on replacement (non restricted) : 52 FRs

evaluate their hazard, identify their mechanisms of toxicity.

- To predict their impact on health
- To provide a mechanism for health effects
- To identify biomarkers of effects

EU science and policy for a healthy future

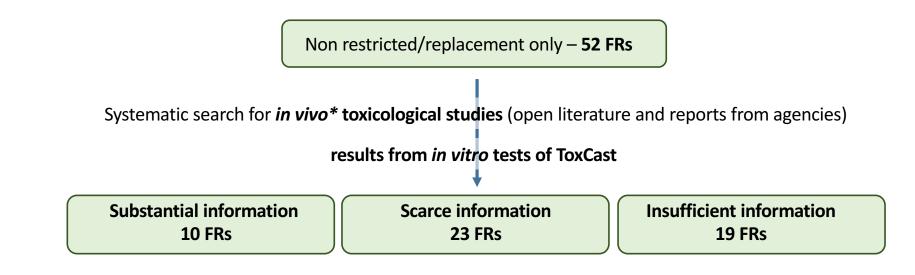
Procedure – Collecting toxicological data

* Animal studies and human epidemiology studies

The US-EPA ToxCast programs and dashboard

- Part of the shift in toxicity testing toward alternative to animal studies
- ToxCast and Tox21 programs use high throughput methods to test thousands of chemicals over a large spectrum of *in vitro* assays (e.g., in cells).
- Open and easy access to the results through the dashboard for 9076 chemicals in 1192 Assays - <u>https://actor.epa.gov/dashboard/</u>

Data collected from the ToxCast dashboard

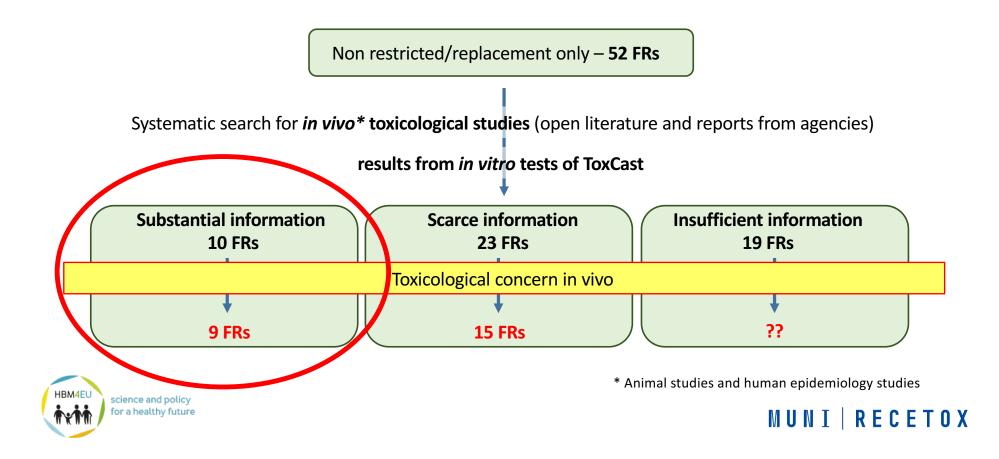

HBM4EU

M

science and policy for a healthy future

e e e e e e e e e e e e e e e e e e e	EPA iCSS To	xCast D	ashboard					Home E		
Choose a view: Assays Database: prod_dashbo	ard_v2	al Summary	Assay Summary	Bioactivity	Help					
Chemicals Dashboard: v2	Start To	Start Tutorial - Bioactivity Tab								
Chemicals - 1 Q 🗸 🕢 Assays - 883	Q ✔ Ø Teste	d Samples - Mu	Itiple Concentratio	ns				•		
		Actives Only Representative Samples Download Clear Sa						es		
CASRN Chemical Actives - MC Only All Te 13674-87-8 TDCPP Assay Component Endpoi	ame	Assay En		HitCall	Plot (Win)	Full PI Model	AC50	Conc U		
% of assays in wl FR is active			> Sele	ct lov ecula		Gain-Los 50 (po get)		uM		

Procedure – toxicological data availability



* Animal studies and human epidemiology studies

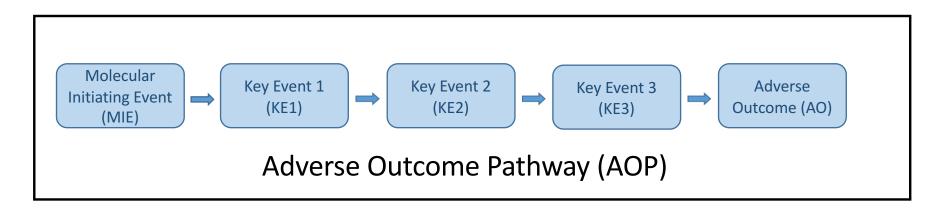
Procedure – evaluation of hazard

Focus on 9 FRs – need to identify their mechanisms of toxicity

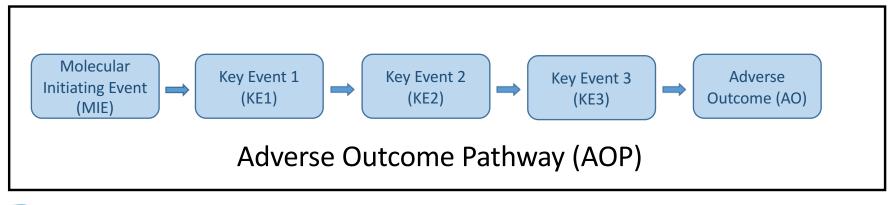
Substantial information and toxicological concern

9 FRs

- Insufficient to clearly associate health effects to exposure (e.g., lack of human studies)
- > No mechanism of toxicity clearly identified



The AOPwiki

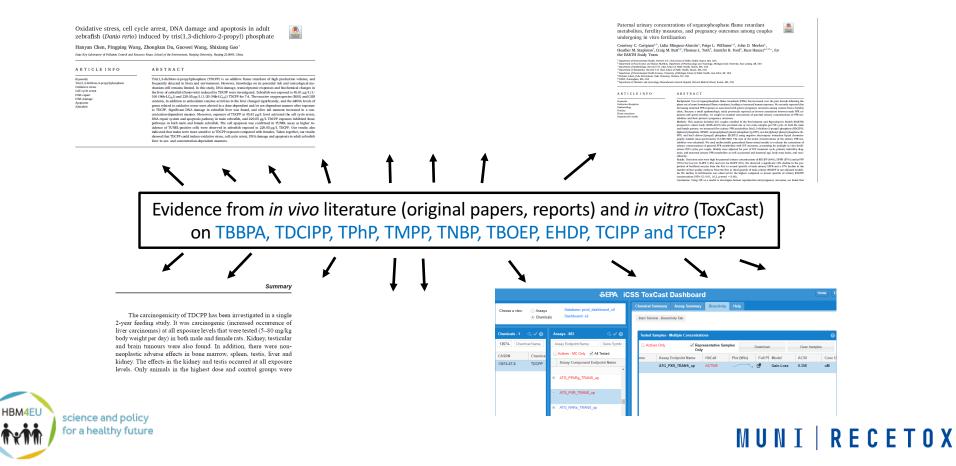

- Online knowledge base supported by several international authorities
- Open access to all existing AOPs, MIEs, KEs, AOs
- Each AOPs, MIEs, KEs, AOs has its own page

Evidence from Literature (original papers, reports) and ToxCast on **TBBPA, TDCIPP, TPhP, TMPP, TNBP, TBOEP, EHDP, TCIPP and TCEP**

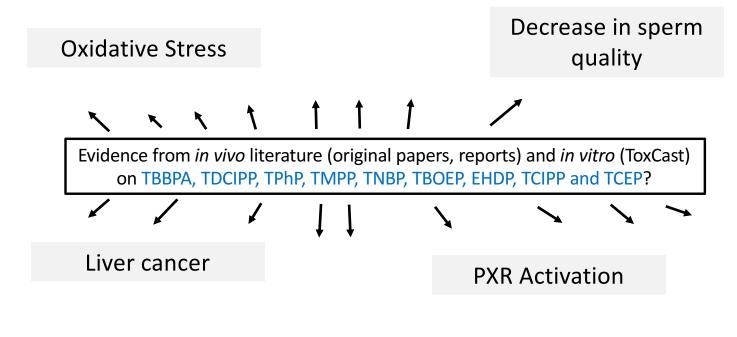
How to merge information from literature and information from the AOPwiki?

Linking information from literature to existing AOPs

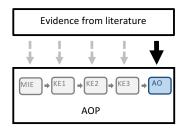
Step 1: Identify individual biological effects of the chemical and collect evidences from the literature *"Re-structure" the complex info from the literature into "individual" biological effects*


Step 2: Link biological effects to existing Key Events (KE) and AOPs to which they belong from the AOPwiki

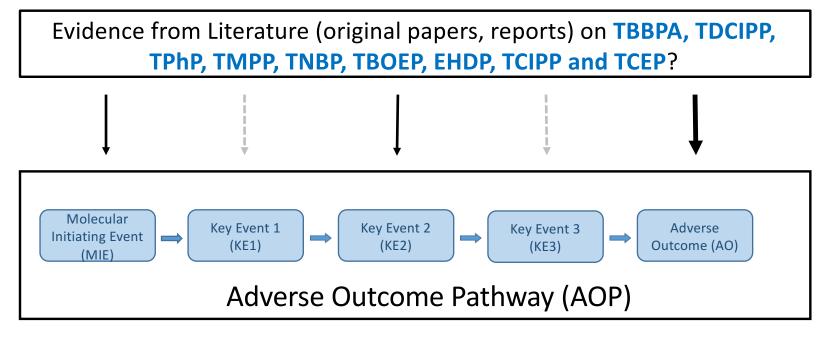
Tricky part - variable/different terminology used in literature vs. Terminology in AOPwiki > redundancy, > information can get lost


Step 3: Select AOPs for which we found evidence linking the chemical to at least 3 KEs, with strong evidence for at least 1 KE, and of good enough quality

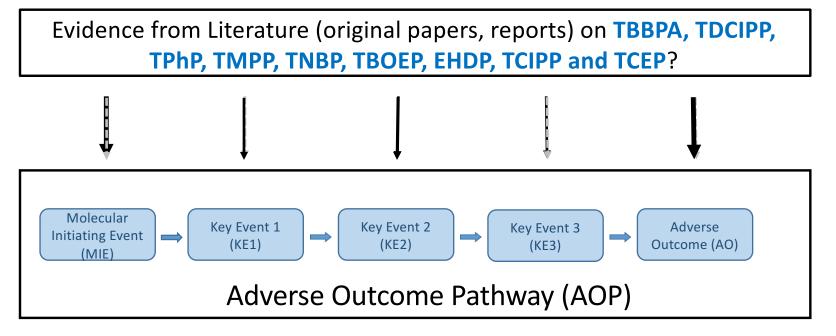
Step 1: Identify individual biological effects



Step 1: Identify individual biological effects


Step 2: Link biological effects to existing Key Events (KE) using AOPwiki

AOPV	Viki AOPs	Key Events	KE Relationships	Stressors					
API]			teratogenicity	Search				
Find by ID Find by ID No title search results matched your request Key Events Fulltext Search Results									
	Title 🔺								
Id	Title 🔺		Short name		Biological organization				
ld 1505	Title Cell cycle disord	er		ter	-				



Step 3: Select "plausible AOPs" (chemical linked to 3 or more KEs)

Step 3: Select "plausible AOPs" (chemical linked to 3 or more KEs)

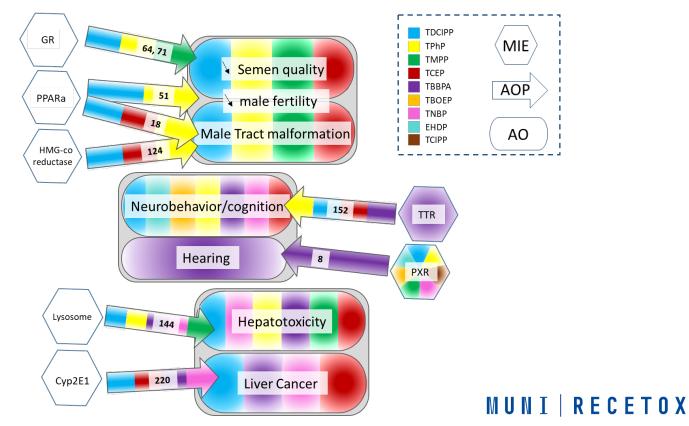

Most relevant AOs and corresponding plausible AOPs for Cat I FRs

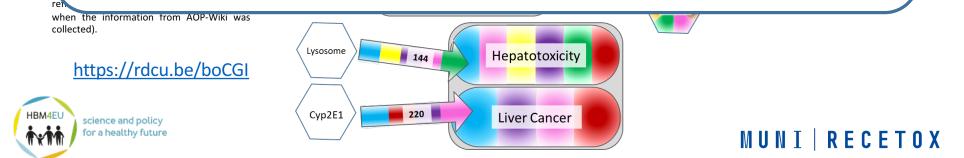
Figure 2: Illustration of major results from literature/ToxCast/AOP search for Category I FRs

Major AOs are indicated (in ovals) with corresponding plausible AOPs (arrows with their number from the AOP-wiki) and MIE (in hexagons). A color code indicates for which Cat I FR the AOP is a plausible mechanism, or the AO or MIE has been reported. No colors at MIE indicate that the effects of FRs have not been reported so far or AC50 from ToxCast was above 1µM. Several other AOs, AOPs and MIEs not illustrated in this figure have been investigated and are listed in Supplementary Table S3. (Disclaimer: because of dynamic nature of AOP-Wiki, the information on AOPs presented in the paper reflects state of the art as of June 2018. when the information from AOP-Wiki was collected).

https://rdcu.be/boCGI

HBM4EU science and policy for a healthy future

Most relevant AOs and corresponding plausible AOPs for Cat I FRs



Identify mechanisms underlying health effects reported in only few studies: neurotoxicity, hepatotoxicity and decrease in male fertility.

Identify gaps in mechanistic knowledge (e.g., lack of molecular targets)

I FR

Predict potential impacts on human health that did not receive much attention (e.g., metabolic disorders or breast cancer)

Conclusions

For replacement chemicals with rather little toxicological data available:

- Information from ToxCast can be a useful to predict toxicological concern (e.g. PBP). However, no/low activity in ToxCast assays does not necessary imply low toxicological concern in vivo.
- AOP wiki is useful to make optimum use of the data available to identify mechanisms, predict potential impacts on human health and identify gaps in mechanistic knowledge

However it still has limitations, e.g. incomplete representativity of the biological processes

Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programmeunder grant agreement No 733032 HBM4EU, the European Union's Horizon 2020 research and innovationprogrammeunder the Marie Skłodowska-Curie grant agreement No 734522, and the Czech Ministry of Education, Youth and Sport (LO1214).

Thanks to HBM4EU project team for initial structure of compound categorization.

MUNI | RECETOX

Lisa Melymuk Ludek Blaha

Thank you for your attention!