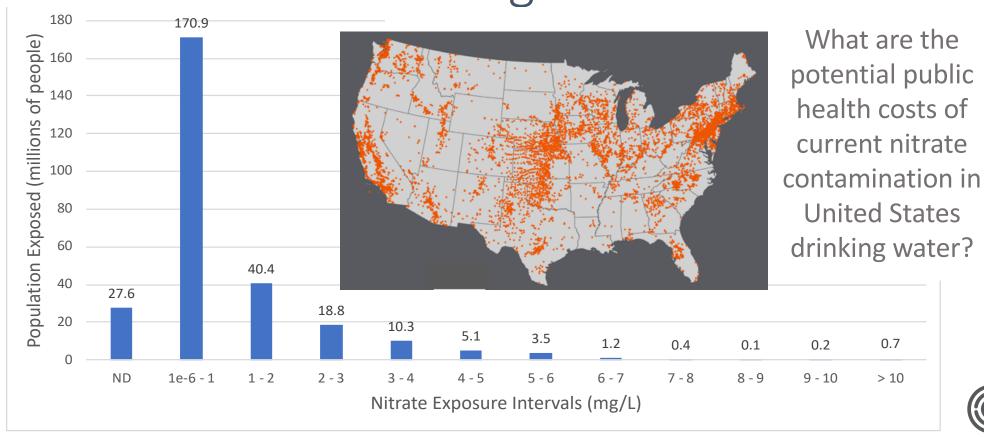


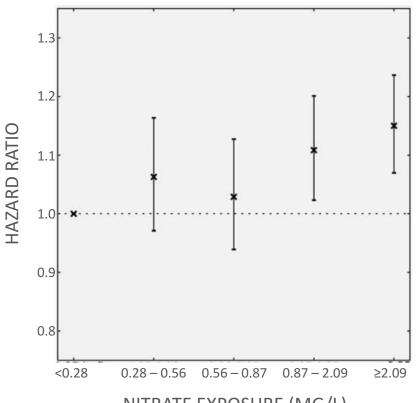
Nitrate in Drinking Water

HEALTH CONCERN
IDENTIFIED IN THE 1960S

Methemoglobinemia, blue-baby syndrome


HEALTH CONCERNS IDENTIFIED SINCE THE 1990S

Cancer, adverse pregnancy outcomes


National contamination of nitrate in drinking water

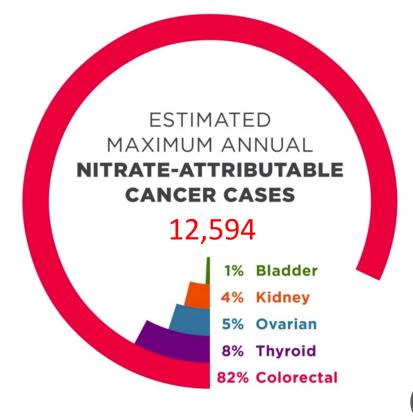
Nitrate in drinking water and cancer risk

NITRATE EXPOSURE (MG/L)

Cancer Type	Location and Publication Year	Nitrate-N cut-off (mg/L)	Cancer risk in exposed population
Colorectal	Spain and Italy 2016	1.7	1.49
Colorectal	Denmark 2017	0.9	1.11
Colorectal	lowa 2003	5	1.8*
Ovarian	lowa 2015	3	2.03
Thyroid	lowa 2010	2.5	2.18
Kidney	lowa 2007	5	1.7*
Bladder	lowa 2016	5	1.61

^{*} Above median red meat consumers

Estimate of **annual nitrate-attributable** cancer cases


Population exposed X increased risk in the exposed population X baseline national incidence = Nitrate attributable cancer cases

- Population exposed = # of people exposed above a given nitrate cut-off level
- Increase risk = Relative Risk (RR) in the exposed population
- Baseline Incidence = National incidence as reported by CDC

Estimated annual nitrate-attributable cancer cases

Cancer Type	Estimated MINIMUM number of cancer cases	Estimated MAXIMUM number of cancer cases
Colorectal	1233	10,379
Ovarian	110	580
Thyroid	369	1,047
Kidney	454	454
Bladder	134	134

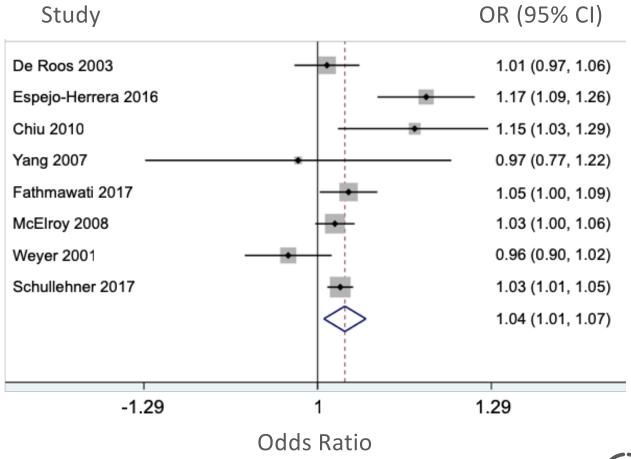
Estimated nitrate-attributable cancer cases for each state per 100,000 people

Estimate of **economic cost** of nitrateattributable cancer cases

Direct Medical Costs = Initial Cost + Continuing Costs each Year + Cost for the Last Year of Life

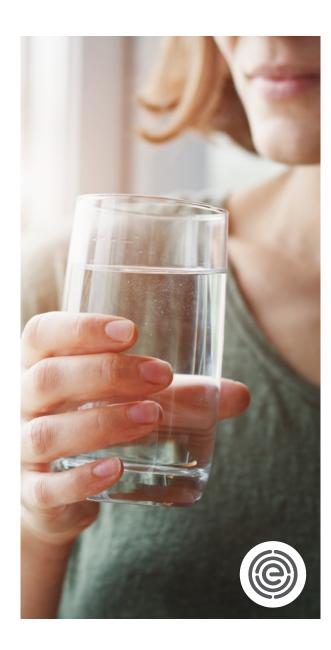
Indirect Economic Loss = Total DALYs * VOLY

DALYs = Nitrate-attributable cases * (YLL + YLD)

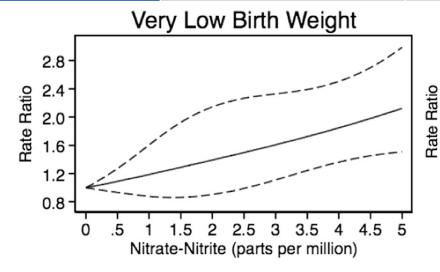

- DALY = disability-adjusted life years
- VOLY = value of a life year
- YLL = years of life lost (avg life expectancy median age death for disease)
- YLD = years lived with disease (years lived with disease * disease-specific disability weight)

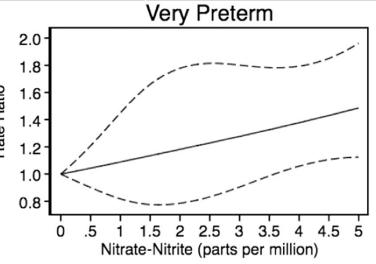
Estimated economic cost of nitrateattributable cancer cases

Cancer Type	Estimated MINIMUM number of cancer cases and DALYs	Estimated MAXIMUM number of cancer cases and DALYs	Range of Medical Costs in 2014 USD (billions)	Range of Indirect economic loss in 2014 USD (billions)
Colorectal	1,233 and 10,083	10,379 and 84,901	\$0.16 to \$1.33	\$0.58 to \$4.9
Ovarian	110 and 1,558	580 and 8,188	\$0.02 to \$0.11	\$0.09 to \$0.47
Thyroid	369 and 5,718	1,047 and 14,695	N/A	\$0.30 to \$0.85
Kidney	N/A	454 and 4,310	\$0.06	\$0.25
Bladder	N/A	134 and 535	\$0.01	\$0.03


Meta-analysis of Colorectal Cancer Risk and Nitrate in Drinking Water

Summary and Conclusions


- 2,300 to 12,594 cancer cases, costing \$1.5 to \$8 billion, annually in the U.S. may be attributable to nitrate, of which 54-82% are colorectal cancer cases.
- States with estimated greater than 10 nitrateattributable cancer cases per 100,000 people are Delaware, Arizona, California and Iowa.
- Meta-analysis of eight studies assessing nitrate in drinking water and colorectal cancer finds a statistically significant linear positive association
- Substantial public health impacts are likely occurring at current nitrate levels in tap water



Nitrate in drinking water and adverse birth outcomes

Cancer Type	Location and Publication Year	Nitrate-N cut-off (mg/L)	Disease risk in exposed population
Neural Tube Defect	Brender 2013	4.5	1.43
Very low birth weight	Stayner 2017	1	1.17
Very preterm birth	Stayner 2017	1	1.08

Estimated annual nitrate-attributable adverse birth outcomes

Cancer Type	Location and Publication Year	Nitrate-N cut-off (mg/L)	Disease risk in exposed population	Estimated number of nitrate-attributable cases
Neural Tube Defect	Brender 2013	4.5	1.43	41
Very low birth weight	Stayner 2017	1	1.17	2939
Very preterm birth	Stayner 2017	1	1.08	1725

Estimated economic cost of nitrateattributable adverse birth outcomes

- Lifetime direct costs of neural tube defects (spina bifida) are \$577,000 to \$791,900 per case (National Center on Birth Defects and Developmental Disabilities)
 - 41 cases = \$24 to 32 million
- Premature Births medical cost estimate of \$67,022 per case (Institute of Medicine)
 - 1725 cases = \$116 million
- Indirect cost due to Loss IQ points associated with very low birth weight (Malits et al. 2018)
 - 2939 cases = \$11,745 to \$15,883 per IQ point loss

