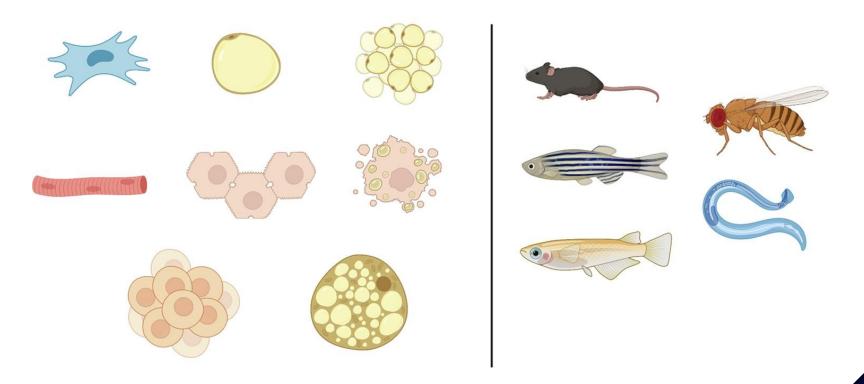
Obesity III Obesogen Assays: Limitations, Strengths, and New Directions

WAYNE STATE

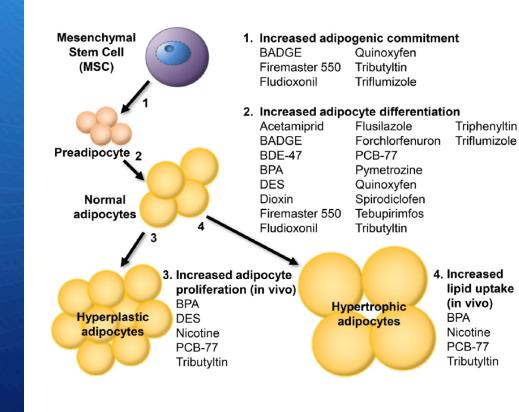
Center for Urban Responses to Environmental Stressors Chris Kassotis, PhD Assistant Professor Wayne State University ©cdkassotis


CHE EDC Strategies Partnership Webinar Series May 19, 2022

Overview of Obesogen Models

Established and Emerging Obesogenic Chemical Evaluation Models

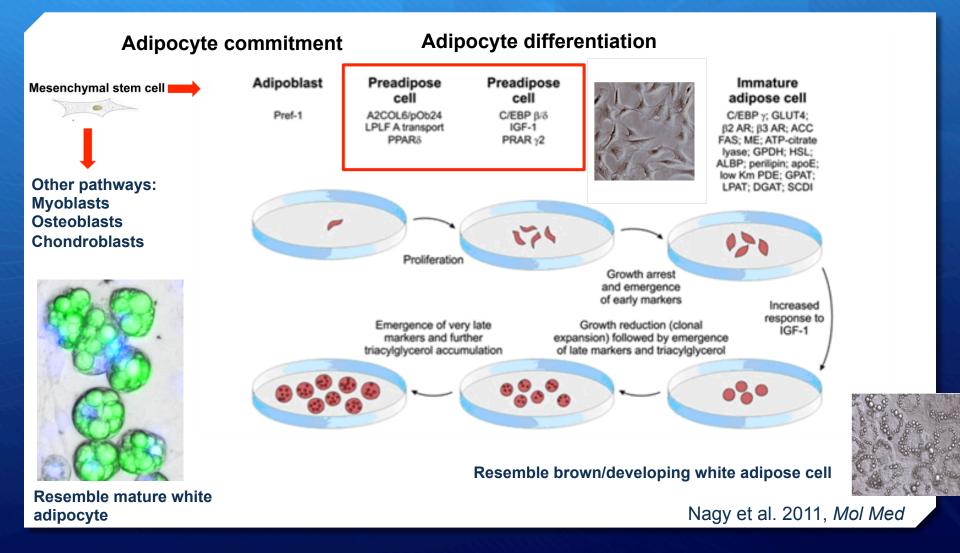
In vitro models


In vivo models

Use of Models in Metabolic Health Toxicity Assessments

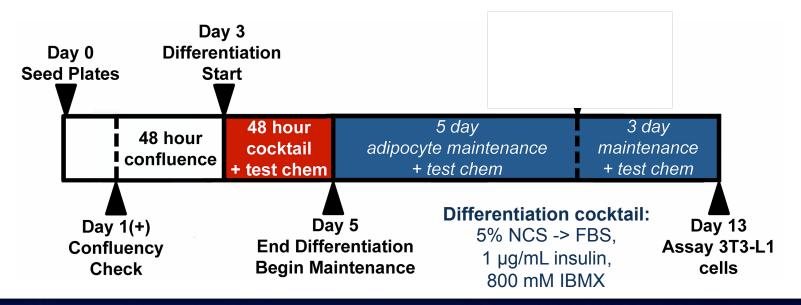
- Evaluating <u>causal</u> toxicity of chemicals relies on a combination of *in vitro* and *in vivo* models
 - Need for HTP, reliable in vitro models to accurately screen for and prioritize higher order testing
 - Need for reliable in vivo models that are cost-effective, have high translation to human health, and are well-validated
- Traditionally, MDC research has relied heavily on rodent-based cell and animal models (3T3-L1)
 - Models used have been broadening over time
 - Increasing use of MSCs and human cell models
 - Increasing use of fish models, particularly zebrafish
 - Increasing use of non-traditional models such as fruit fly, c. elegans

Potential Mechanisms of Metabolic Dysfunction



Numerous potential mechanisms of metabolic disruption:

- Adipose lineage commitment from MSCs
- Adipocyte differentiation from precursor committed cells
 - Increased pre-adipocyte proliferation
 - Increased lipid uptake
- Shifting energy balance to favor calorie storage
- Altering basal metabolic rate
- Altering hormonal control of appetite and satiety
- Altering brain circuitry that controls food intake, energy expenditure


Heindel et al. 2017, Repro Tox

Adipocyte Differentiation Process

3T3-L1 Pre-adipocyte Adipogenesis Assay

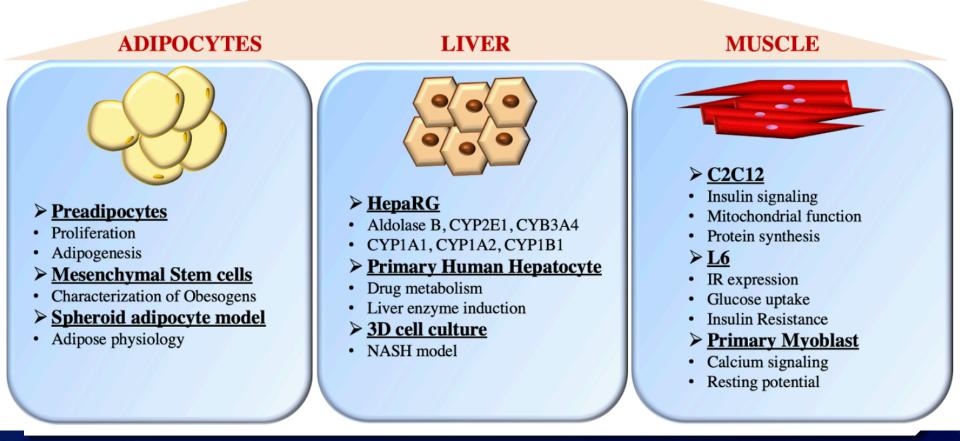
- Swiss albino mouse embryonic fibroblast cell line committed pre-adipocytes
- Extensively used over decades to evaluate adipogenesis
 - Mechanisms of adipocyte differentiation well understood
 - This assay has proven to be a reliable *in vitro* model for screening metabolic disruption *in vivo*.

Adipogenesis Assay Measures

- Triglyceride accumulation
 - AdipoRed hydrophilic fluorescent d
 - Partitions into lipid droplets in the cell

(A)

(B)

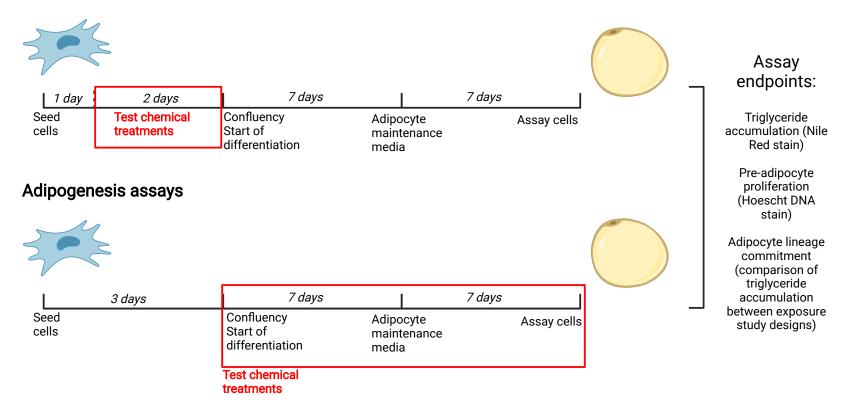

Rosiglitazone

(PPARy agonist)

- Cell proliferation/cytotoxicity
 - NucBlue DNA dye (Hoechst 33342)
 - Partitions into nuclei and fluoresces DNA

Diversity of Cell Model Utilization

In vitro models for metabolic disruption screening



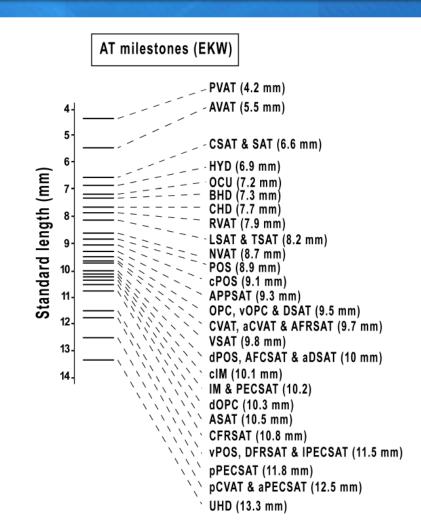
Growing Reliance on MSCs, Human Cells

- Increasing commercial availability of human MSCs, human preadipocytes
 - Less reliance on donors, self-isolation
 - Can source from males/females, lean/obese, diabetic/non, subcutaneous/visceral, etc.
- Ability to examine the interplay of commitment across cell lineages (e.g., bone and adipose, muscle, etc.)
- Increasing utility of liver cell assays to examine TAFLD/NAFLD phenotypes, primary human hepatocytes (despite limitations) have increasing use in drug metabolism
- Limited but increasing evaluation of myogenic differentiation and ability of MDCs to suppress signaling/development

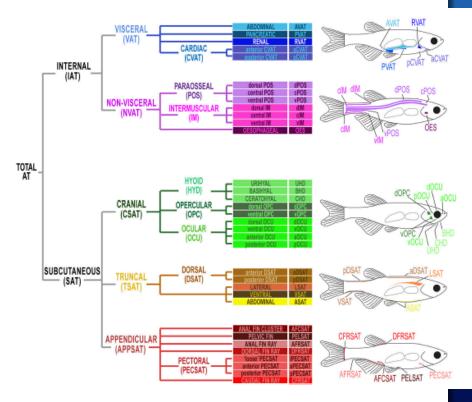
Examination of Adipocyte Lineage Commitment as More Novel Endpoint

Commitment assays

Increasing Diversity of *in vivo Models*


In vivo models for metabolic disruption screening

Models	Advantages	Disadvantages
Zebrafish	 Rapid development, ease of breeding, transparency Metabolic organs/tissues are physiologically and anatomically similar to humans High-resolution fluorescent imaging of total body adipose Ease of molecular manipulation, wealth of transgenic models 	Moderate flexibilityModerate translational value
Medaka	 Genetic sex determination like humans Rapid development, ease of breeding, transparency Metabolic organs/tissues are physiologically and anatomically similar to humans Ease of molecular manipulation, small genome size, high diversity 	 Moderate flexibility Moderate translational value Less characterization of adipose relative to zebrafish
C. elegans	 Compounds that modulate fat storage and obesity can be identified Food intake and energy expenditure can be measured easily Less regulations governing invertebrate animal use 	 Lower conservation of biological pathways with mammals Lack of specific organs and circulatory systems
D. melanogastor	 Small size, short generation time, inexpensive and easy breeding Several discrete organs perform the same as humans Less regulations governing invertebrate animal use 	 Anatomically different from mammals Lower conservation of many relevant biological pathways with mammals
Rodents	 Well described model with clear translation to human outcomes Periconception, pregnancy, parental and offspring, short- and long-term, multi- and trans-generational outcomes can be assessed Diverse housing materials readily available Well-characterized & customizable feed options readily available Inbred and outbred models available to dissect role of genes, environment, and their interactions 	 Time consuming and expensive compared to above alternatives, but less so with larger animal models (e.g. porcine, bovine, ovine, and non- human primates). Ethical issues; regulatory push to reduce use of mammalian vertebrate animal models


Zebrafish as a Metabolic Model

- Measurable adipose/adipocytes appear as early as ~9-12 days of development in zebrafish, originally in the pancreatic and abdominal visceral depots
- 34 anatomically/physiologically/ molecularly distinct adipose depots throughout the body of the fish
 - Clear developmental timeline
- Fish adipose tissue contains a heterogeneous cell population, including adipocyte progenitor cells – similar to mammals
 - Depots separated into subcutaneous, visceral, intramuscular adipose tissues, with characteristics similar to humans
 - Zebrafish do not have brown adipocyte tissue

Zebrafish as a Metabolic Model

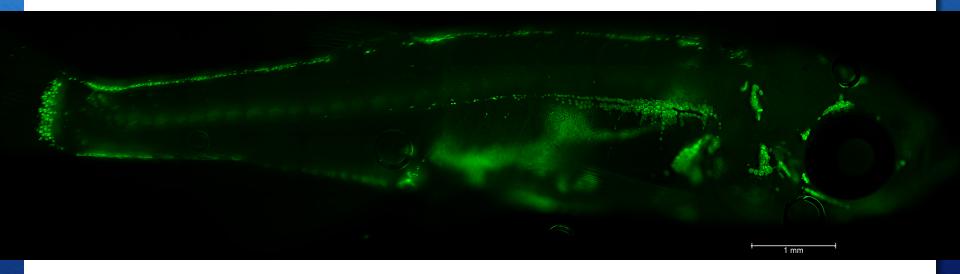
- Molecular mechanisms underlying adipocyte and lipid depot development are highly conserved across vertebrates:
 - Genes associated with adipocyte differentiation (*fabp*, *pparg*, *cebpa*), lipolysis (*lipoprotein lipase*), and endocrine function (*leptin*, *adiponectin*, *adipsin*)
 - Energy storage functions and morphology of adipose tissue
- Adipose depots respond to high fat challenge and food withdrawal as you would anticipate
 - organisms utilize the adipose in times of food stress and pack on extra adipose with HFD
- Imaging of whole-animal adipose in mammals is limited, technically challenging, and generally low resolution, whereas imaging in fish is high-resolution and relatively easy

Minchin and Rawls, 2017 Dis Mod & Mech

C. Elegans as a Metabolic Model

- Small nematode living in temperature soil environments
- Main regulatory pathways of energy homeostasis shared with mammals
 - Lower conservation of many of these pathways and lack of specific organs
 - Lack PPARg, though express orthologs to PPARa and PPARd
 - > No identifiable homolog for leptin
 - No cells specifically designed for lipid storage (i.e., adipocytes)
 - Store lipids primarily in intestinal and epidermal skin-like cells
- BPS, methylmercury, and other MDCs increase lipid deposition, similar to other in vivo MDC models

Drosophila melanogaster as a Metabolic Model


- Fruit fly model organism prized for rapid life cycle, large number of offspring per generation, and simpler genetics relative to most vertebrates
- Despite anatomical differences, lots of functional overlap with humans
 - Fat body covers many of the metabolic health functions of both liver and adipose tissue
- DEHP, methylmercury, PFAS have been described to increase weight/adiposity and/or signaling

The Future of Obesogen / MDC Screening

- Need for new/improved standardized testing methods to ID chemicals that disrupt metabolic health through diverse mechanisms.
 - Multiple large-scale EU efforts designed to help address this gap
- Improved understanding and validation of alternative / emerging in vitro and in vivo obesogen models.
 - Increasing use of other animal models, human in vitro models, and 3D/spheroid cell culture techniques
- Predictive modeling may offer some improved utility in screening the myriad chemicals in commerce for MDC properties
 - Need for reliable, reproducible ToxCast and other input data
 - Need for robust understanding of MIEs, contributory mechanisms

Questions?

