The Urgent Need for Safe Drinking Water Standards in the Absence of Federal Action

Presentation for CHE-Alaska

April 24, 2019

Anna Reade, Ph.D.

Per- and polyfluoroalkyl substances

- Large class of fluorinated chemicals
- Water- and oil-repellant properties
- Well-known examples include PFOA and PFOS
- Found throughout our environment and in nearly all Americans¹

PFAS as a Class

- 1. Extremely persistent
- 2. Highly mobile
- 3. Linked to wide variety of adverse health effects

Perspectives Brief Communication	A Section 508–conformant HTML version of is available at <u>http://dx.doi.org/10.1289/eh</u>	'this article p.1509934.			
The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)	Chemosphere 114 (2014) 337–339				
http://dx.doi.org/10.1289/ehp.1509934 As scientists and other professionals from a variety of disciplines, we are concerned about the production and release into the environ- ment of an increasing number of poly- and perfluoroalkyl substances (PFASs) for the following reasons: 1. PFASs are man-made and found everywhere. PFASs are highly	ELSEVIER jour	Contents lists available at ScienceDirect Chemosphere nal homepage: www.elsevier.com/locate/chemosphere	Chemosphere		
	Helsingør Statement om Martin Scheringer ^{a,*} , Xenia 7 Thomas F. Webster ^f	ו poly- and perfluorinated alkyl substances (PFASs Frier ^b , Ian T. Cousins ^c , Pim de Voogt ^d , Tony Fletcher ^e , Zhanyı מונלה 2013 לפולה Switzerland	;) () _{CrossMark} un Wang ^a ,		

- ^bTechnical University of Denmark, Division of Food Chemistry, 2860 Søborg, Denmark
- ^c Department of Applied Environmental Science (ITM), Stockholm University, 10691 Stockholm, Sweden
- ^d Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands

PM⁻

- ^e London School of Hygiene & Tropical Medicine, London WC1H 9SH, United Kingdom
- ^fSchool of Public Health, Boston University, Boston, MA 02118, USA

PFAS as a Class

Source: Wang Z, et al., 2017. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ Sci Technol 51(5):2508-2518

PFAS as a Class

Z, et al., 2017. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? *Environ Sci Technol* 51(5):2508-2518 <u>https://www.dtsc.ca.gov/SCP/upload/Product-Chemical-Profile-PFAS-Carpets-and-Rugs.PDF</u>

Health Effects Linked to PFAA Exposure

Summary of ATSDR's Findings on Health Effects from Perfluoroalkyl Acid Exposure

	Immune	Developmental & Reproductive	Lipids	Liver	Endocrine	Body Weight	Blood
PFOA	×	×	×	×	×	×	×
PFOS	×	×	×	×	×	×	×
PFHxS	×			×			×
PFNA	×		×			×	
PFDeA	×	×	×	×	×	×	
PFDoA	×	×				×	
PFUA	×	×				×	×
PFHxA		×					×
PFBA		×		×	×		×
PFBS		×		×	×		×
GenX	×	×		×			

X ATSDR 2018 Draft Toxicological Profile for Perfluoroalkyls X EPA Toxicity Assessments of PFBS and GenX chemicals (HFPO Dimer Acid)

Short-chain PFAS Health Concerns

- Introduced as 'safer' alternatives due to their supposed shorter half-lives in humans
 - Found to accumulate in organs, some at concentrations that are higher than long-chain PFAS¹
- Highly persistent, more mobile in the environment and harder to treat in drinking water than long-chain PFAS²
 - Continual exposure elimination rate may be an inadequate measure of health threat to humans^{3,4}

- 2. Wang Z, et al., 2015. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions. *Environ Int* 75:172-179
 - 3. Gomis MI, et al., 2018. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. *Environ Int* 113:1–9.
 - 4. Brendel S., et. al. (2018) Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under Reach. Environ Sci Eur, 30(1): 9

^{1.} Pérez F, et al., 2013. Accumulation of perfluoroalkyl substances in human tissues. *Environ Int*, 59, 354-362.

EPA's Health Advisory is Not Health Protective

- Michigan PFAS Science Advisory Panel estimated blood serum levels from exposure to 70 ppt PFOA in drinking water¹
 - Found to be in the range at which health effects are seen in human studies
- Several states have proposed or adopted drinking water standards or guidelines stricter that 70 ppt after conducting their own analysis
 - NJ, NY, VT, MI, MN, CA...

Lessons learned from Michigan

Michigan Moving Forward on PFAS

- 1. Michigan PFAS Action Response Team (MPART) created 2017
- Michigan completes first statewide study of PFAS in water supply -Feb. 2019
- Screening levels announced Feb. 2019
 9 ppt PFOA, 8 ppt PFOS, 9 ppt PFNA, 84 ppt PFHxS, and 1,000 ppt PFBS
- 4. Will establish maximum contaminant levels (MCLs) by Oct. 2019

the state "can no longer wait for the Trump administration to act" on the issue – Governor Whitmer

National UCMR3 vs. Michigan Testing

3 detects in 2 zip codes

https://www.epa.gov/dwucmr/occurrence-data-unregulated-contaminant-monitoring-rule#3 https://www.michigan.gov/pfasresponse/0,9038,7-365-86511---,00.html https://www.michigan.gov/pfasresponse/0,9038,7-365-86510_87918-464299--,00.html

National UCMR3 vs. Michigan Testing

3 detects in 2 zip codes

40+ contamination sites 100+ public water systems

https://www.epa.gov/dwucmr/occurrence-data-unregulated-contaminant-monitoring-rule#3 https://www.michigan.gov/pfasresponse/0,9038,7-365-86511---,00.html https://www.michigan.gov/pfasresponse/0,9038,7-365-86510_87918-464299--,00.html

CA PFAS Contamination - UCMR3

Potential PFAS Contamination in CA

https://www.epa.gov/dwucmr/occurrence-data-unregulated-contaminant-monitoring-rule#3

Hu XC, et al., 2016. Detection of PFASs in US drinking water linked to industrial sites, military fire training areas, and waste water treatment plants. *Env Sci and Tech Letters* 3(10):344–350

NRDC's PFAS Report for Michigan

Includes:

- 1. Most critical health effects associated with PFAS exposure
- 2. The risk of additive/synergistic effects and the need for a classbased approach to regulating PFAS
- 3. An analysis of existing or proposed standards and advisories
- 4. Review of detection and treatment technologies available
- 5. Recommendations on monitoring and drinking water standards

Blog: <u>https://www.nrdc.org/experts/anna-reade/michigan-should-set-precedent-setting-pfas-water-standards</u> Report: <u>https://www.nrdc.org/resources/michigan-pfas-2019-scientific-and-policy-assessment-addressing-pfas-chemicals-drinking</u>

NRDC's Recommendations

- 1. Comprehensive monitoring
- 2. Maximum contaminant level goal (MCLG) of zero for total PFAS
- Immediately set a combined maximum contaminant level (MCL) of 2 ppt for PFOA, PFOS, PFNA, PFHxS and 5 ppt for GenX
- 4. Within the near future, set a Treatment Technique standard for total PFAS of reverse osmosis or equivalent

Acknowledgements

Author on PFAS detection and treatment review:

 Tracy Quinn, P.E., Senior Policy Analyst Natural Resources Defense Council

Contributing author on Risk Assessment and Toxicology:

 Judith S. Schreiber, Ph.D., Schreiber Scientific, LLC Reviewers:

- Katie Pelch, Ph.D., Senior Scientist
 The Endocrine Disruption
 Exchange
- Sonya Lunder, Ph.D., Senior Toxics Advisor for the Gender, Equity & Environment Program - Sierra Club
- Christina Swanson, Ph.D., Director of the Science Center - Natural Resources Defense Council