Plastics Scorecard: Evaluating the Chemical Footprint of Plastics

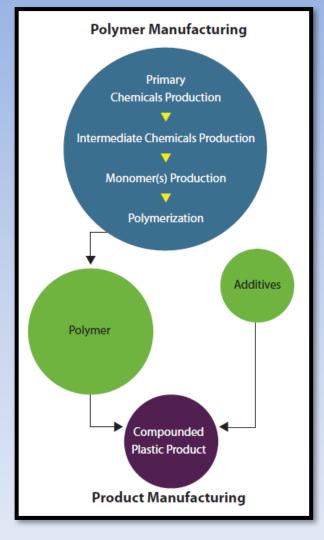
Mark S. Rossi, PhD

October 30, 2018

Clean Production Action

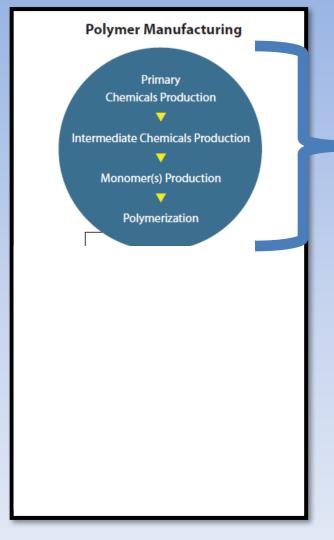
Together, we're creating a safer and healthier future

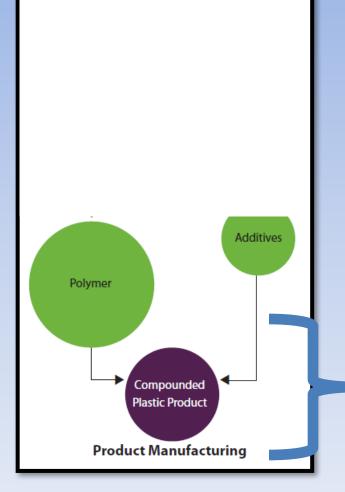
Together, we're creating a safer and healthier future



Plastic Scorecard

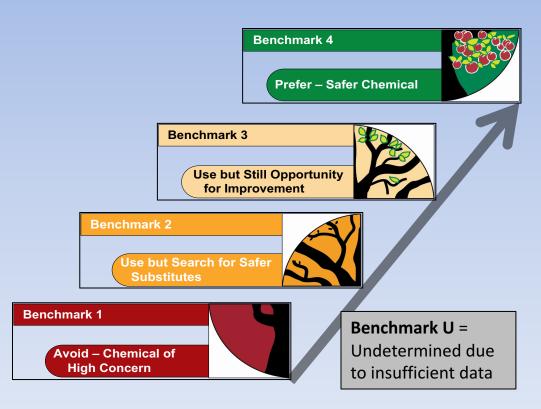
- Goal: define progress to safer chemicals in polymers
- Polymer manufacturing: evaluate progress to safer chemicals for each stage in manufacturing a polymer
- **Final plastic product**: evaluate chemical footprint of final product
- Published in 2014 authors: Mark Rossi & Ann Blake
 https://www.bizngo.org/sustainable-materials/plastics-scorecard



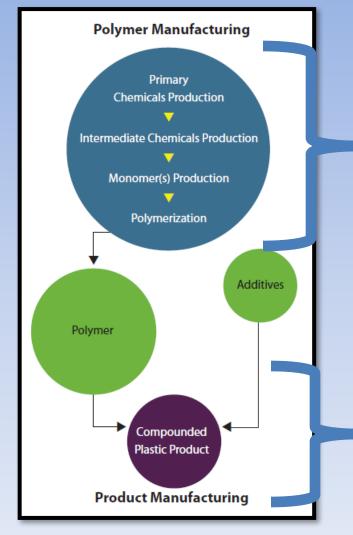


Evaluated progress to safer chemicals (using GreenScreen)

Evaluated presence of chemicals of high concern, ie, chemical footprint (GreenScreen Benchmark 1)

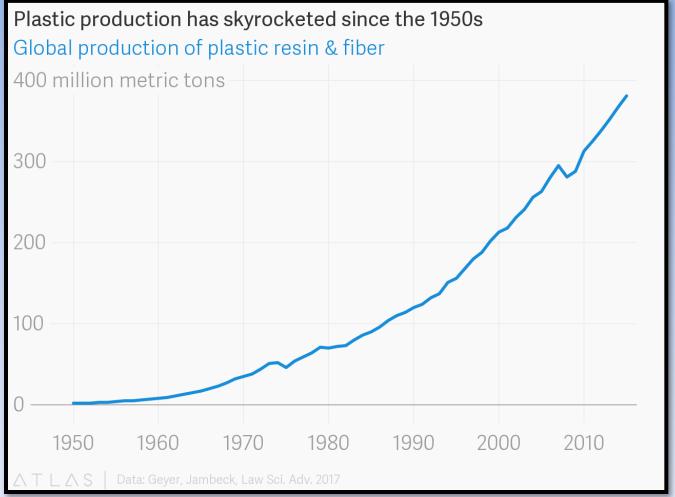


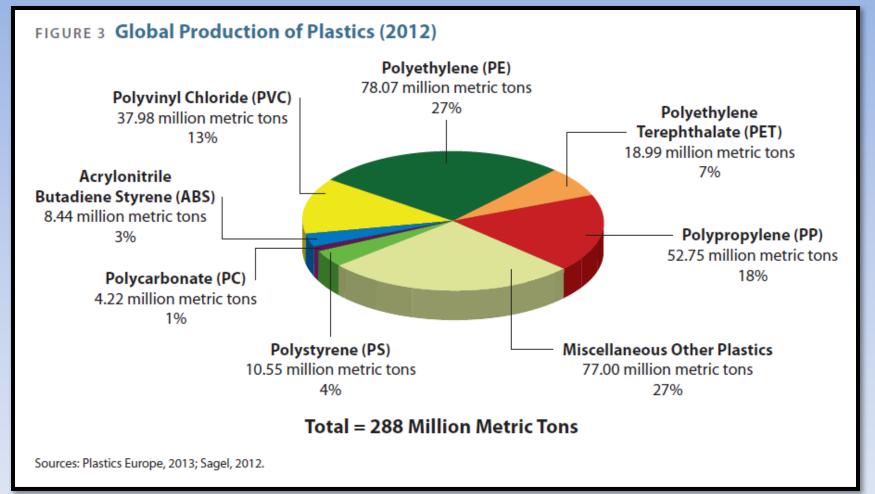
GreenScreen® for Safer Chemicals


- Comprehensive & vetted:
 - 18 hazard endpoints
 - publicly available, current v 1.4
 - vetted by scientists, businesses,
 NGOs, & governments
- Translated to easy to communicate

 Benchmarks: 1 to 4 plus "U"
- Identify chemicals of high concern:
 Benchmark 1 "chemical footprint"
- **Identify safer chemicals**: ≥Benchmark 2
- Used by: Apple, HP, Levi's, etc.
- Method document: https://www.greenscreenchemicals.org/ method/method-documents

Evaluated progress to safer chemicals (using GreenScreen)


Evaluated presence of chemicals of high concern, ie, chemical footprint (GreenScreen Benchmark 1)


Progress to safer chemicals in polymer manufacturing

Source: https://www.theatlas.com/charts/BkAVFsjrb

TABLE 1 Primary Chemicals Consumed by Plastics

Primary Chemicals Ethylene^a Propylene^a Xylenes^b Benzenea Chlorinec Butadiene^a Methanol^a

Total

"Primary chemicals" are the building block chemicals used to manufacture plastics and other chemicals. a. 2008 data, b. 2009 data, c. 2010 data

Source: Chemical Economics Handbook, articles (a), (d), (e), (i), (j), (r), (s).

TABLE 1 Primary Chemicals Consumed by Flastics

Primary Chemicals	Total Globz Consumptio — All End Uses (million metric tons)	Consumed by Plastics (%)	Consumed by Plastics (million metric tons)
Ethylene ^a	113.18	84%	95.13
Propylene ^a	74.90	82%	61.66
Xylenes ^b	42.89	88%	37.62
Benzenea	39.67	85%	33.52
Chlorine ^c	56.21	42%	23.55
Butadiene ^a	9.28	94%	8.75
Methanol ^a	41.86	10%	4.19
Total	377.99	70%	264.41

[&]quot;Primary chemicals" are the building block chemicals used to infecture plactice and the enemicals.

a. 2008 data, b. 2009 data, c. 2010 data

Source: Chemical Economics Handbook, articles (a), (d), (e), (i), (j), (r), (s).

TABLE 2 Plastics and the Chemicals they Consume

Steps in Polymer Manufacturing	Plastic Polymers							
Core Chamical imputs	ABS	PC	PE	PET	PLA	PP	PS	PVC
Primary Chemical Inputs								
1,3-Butadiene	•							
Benzene	•	•					•	
Chlorine		•						•
Ethylene							•	•
Glucose								
Methanol				•				
Propylene	•	•				•		
Xylenes (p-Xylene)				•				

TABLE 2 Plastics and the Chemicals they Consume

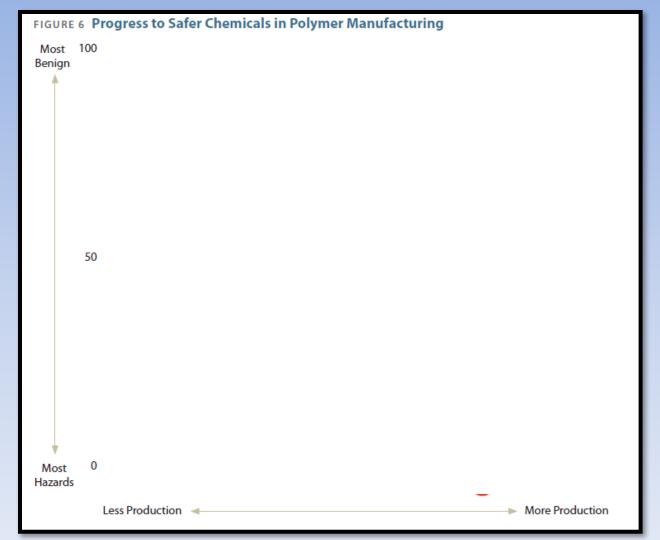
Steps in Polymer Manufacturing	Plastic Polymers							
Core Chemical Inputs	ABS	PC	PE	PET	PLA	PP	PS	PVC
Intermediate Chemical Inputs								
Acetic acid				•				
Acetone		•						
Ammonia	•							
Cumene		•						
Dimethyl terephthalate / Terephthalic acid				•				
Ethylbenzene	•						•	
Ethylene dichloride								•
Ethylene glycol				•				
Lactic Acid					O.			
Phenol		· ·						

TABLE 2 Plastics and the Chemicals they Consume

	Steps in Polymer Manufacturing	Plastic Polymers							
	C. Cnemical Inputs	ABS	PC	PE	PET	PLA	PP	PS	PVC
K	Monomer Inputs								
	1,3-Butadiene	•							
	Acrylonitrile	•							
	bis(2-hydroxyethyl) terephthalate				•				
	Bisphenol A (BPA)		•						
	Ethylene			•					
k	Lactide					0			
	p-tert-Butylpnenor								
	Propylene						•		
	Styrene	•						•	
	Vinyl chloride monomer								•

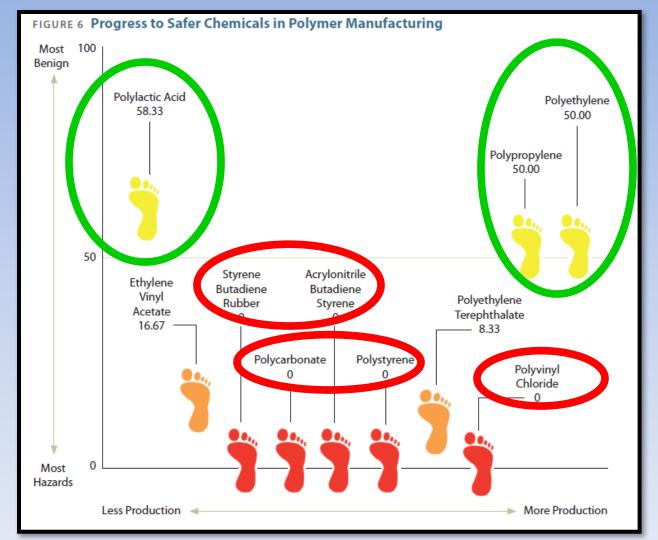
Chemicals of High Concern (plastics) Ethylene dichloride (PVC)b para-Xylene (PET)b Benzene (PS)b Vinyl chloride monomer (PVC)b Ethylbenzene (ABS, PS)b Styrene (ABS, PS, SAN, SBR)b Ethylene glycol (PET, Nylon)^a Cumene (PC)b Butadiene (ABS, SBR)b Acrylonitrile (ABS)a Phenol (PC)c Bisphenol A (PC, epoxy resins)^c Acetone (PC)d Total

"Chemicals of High Concern" to human health or the environment = carcinogen, mutagen, reproductive / developmental toxicant; persistent, bioaccumulative, toxicant (PBT); endocrine disruptor; or chemical of equivalent concern.


TABLE 3 Plastics and the Chemicals of High Concern the parameters.

Chemicals of High Concern (plastics)	Total Gobal Consum, ion (million metric to	Consumed by Plastics (%)	Consumed by Plastics (million metric tons)		
Ethylene dichloride (PVC) ^b	43.45	97%	42.14		
para-Xylene (PET) ^b	42.89	88%	37.62		
Benzene (PS) ^b	39.67	85%	33.52		
Vinyl chloride monomer (PVC) ^b	32.79	97%	31.80		
Ethylbenzene (ABS, PS) ^b	27.57	99%	27.29		
Styrene (ABS, PS, SAN, SBR) ^b	23.63	91%	21.38		
Ethylene glycol (PET, Nylon) ^a	21.00	80%	16.80		
Cumene (PC) ^b	12.23	84%	10.27		
Butadiene (ABS, SBR) ^b	9.28	94%	8.75		
Acrylonitrile (ABS) ^a	5.35	96%	5.16		
Phenol (PC) ^c	8.90	55%	4.88		
Bisphenol A (PC, epoxy resins) ^c	4.04	96%	3.86		
Acetone (PC) ^d	5.67	45%	2.53		
Total	270.79	90%	243.48		

[&]quot;Chemicals of High Concern" to human health or the environment = carcinogen, mutagen, representations of High Concern" to human health or the environment = carcinogen, mutagen, representations of High Concern (PBT); endocrine disruptor; or chemical of equivalent concern.



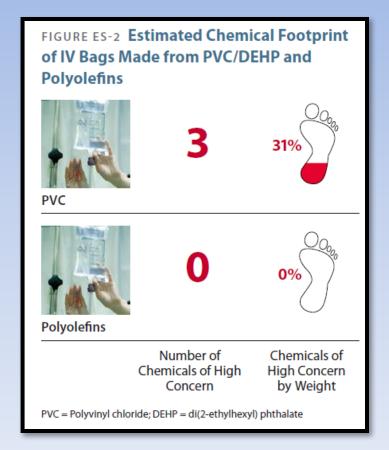
Chemical footprint of plastic products

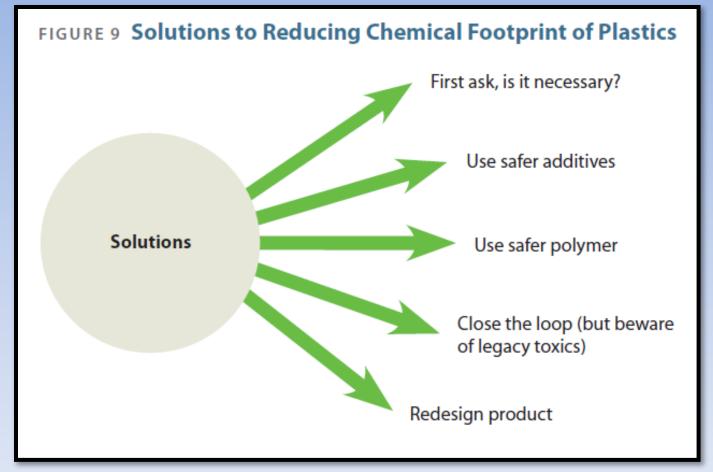
Chemical Footprint of IV Bags

FIGURE ES-2 Estimated Chemical Footprint of IV Bags Made from PVC/DEHP and Polyolefins

PVC = Polyvinyl chloride; DEHP = di(2-ethylhexyl) phthalate

Chemical Footprint of IV Bags




Chemical Footprint of IV Bags

Thank you!

Questions?

Mark S. Rossi, PhD
Executive Director
Clean Production Action
mark@cleanproduction.org

