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Type 1 diabetes 
Mark A Atkinson, George S Eisenbarth, Aaron W Michels

Over the past decade, knowledge of the pathogenesis and natural history of type 1 diabetes has grown substantially, 
particularly with regard to disease prediction and heterogeneity, pancreatic pathology, and epidemiology. Technological 
improvements in insulin pumps and continuous glucose monitors help patients with type 1 diabetes manage the 
challenge of lifelong insulin administration. Agents that show promise for averting debilitating disease-associated 
complications have also been identifi ed. However, despite broad organisational, intellectual, and fi scal investments, 
no means for preventing or curing type 1 diabetes exists, and, globally, the quality of diabetes management remains 
uneven. This Seminar discusses current progress in epidemiology, pathology, diagnosis, and treatment of type 1 
diabetes, and prospects for an improved future for individuals with this disease.

Introduction
Type 1 diabetes is generally thought to be precipitated by 
an immune-associated, if not directly immune-mediated, 
destruction of insulin-producing pancreatic β cells.1,2 
Historically, type 1 diabetes was largely considered a 
disorder in children and adolescents, but this opinion 
has changed over the past decade, so that age at 
symptomatic onset is no longer a restricting factor.3 
Polydipsia, polyphagia, and polyuria (the classic trio of 
symptoms associated with disease onset) along with 
overt hyperglycaemia remain diagnostic hallmarks in 
children and adolescents, and to a lesser extent in adults.  
An immediate need for exogenous insulin replacement 
is also a hallmark of type 1 diabetes, for which lifetime 
treatment is needed. Key questions remain regarding the 
epidemiology of type 1 diabetes, eff ectiveness of current 
therapies, understanding how the disorder develops, and 
preventing or curing the disease.

Epidemiology
Although type 1 diabetes can be diagnosed at any age, it 
is one of the most common chronic diseases of 
childhood.4 Peaks in presentation occur between 
5–7 years of age and at or near puberty.5 Whereas most 
autoimmune disorders disproportionately aff ect women, 
type 1 diabetes is slightly more common in boys and 
men.6 The incidence of type 1 diabetes varies with 
seasonal changes and birth month. More cases are 
diagnosed in autumn and winter,7 and being born in the 
spring is associated with a higher chance of having type 1 
diabetes.8 Development of type 1 diabetes-associated 
autoimmunity (ie, formation of islet autoantibodies) in 
the months or years before onset of symptomatic type 1 
diabetes also shows some seasonal synchronisation.9 
These concepts support a theoretical role for an environ-
mental agent initiating or driving the pathogenic 
processes in type 1 diabetes. 

Globally, the incidence and prevalence of type 1 diabetes 
vary substantially (fi gure 1).10 Type 1 diabetes is most 
common in Finland (>60 cases per 100 000 people each 
year) and Sardinia (around 40 cases per 100 000 people 
each year).16 By contrast, the disorder is uncommon in 
China, India, and Venezuela (around 0∙1 cases per 
100 000 people each year). The global incidence of type 1 

diabetes represents an epidemiological conundrum; wide 
variations in disease incidence are noted between 
neighbouring areas in Europe and in North America. For 
example, incidence in Estonia is less than one-third of the 
incidence in Finland, although the two countries are 
separated by less than 120 km.17 The incidence of type 1 
diabetes has been increasing worldwide for several 
decades.18 In Finland, Germany, and Norway, annual 
increases in incidence of 2∙4%, 2∙6%, and 3∙3%, 
respectively, have been reported.16,19,20 In many countries, 
the rise in incidence of type 1 diabetes has fl uctuated, 
although Sweden has recently seen incidence rates 
plateau.12 If incidence rates continue to increase on their 
existing path, global incidence could double over the next 
decade.16 Increases in incidence have not occurred equally 
across all age groups; in Europe, the most substantial 
increases have been noted in children younger than 5 years 
of age.5,21 The mechanisms underlying these enigmas in 
geographical incidence and increased incidence rates of 
type 1 diabetes are unknown, but have largely been 
attributed to environmental infl uences. Genetic changes 
or more children being born from mothers with 
type 1 diabetes cannot solely explain such rapid rates of 
increased incidence.22 Finally, genetic predisposition 
seems to be less of a factor now than it was in the past as a 
prerequisite for developing type 1 diabetes.23,24 

A plethora of environmental infl uences have been 
purported to aff ect the epidemiology of type 1 diabetes,25 
with infant and adolescent diets,26 vitamin D and 
vitamin D pathway constituents,27–29 and viruses receiving 
the most focus.30,31 Interest is growing in models to 
describe the infl uence of environment on type 1 diabetes, 
including the hygiene hypothesis32 and gut microbiome;33 
however, no specifi c agents with an unequivocal 
infl uence on pathogenesis have been identifi ed. 

Diagnosis
Diagnosis of diabetes has historically included fasting 
blood glucose higher than 7 mmol/L (126 mg/dL), any 
blood glucose of 11∙1 mmol/L (200 mg/dL) or higher 
with symptoms of hyperglycaemia, or an abnormal 2 h oral 
glucose-tolerance test.34 In 2009, the American Diabetes 
Association modifi ed their guidelines for diabetes 
diagnosis to include glycated haemoglobin (HbA1C; a test 
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that averages blood glucose concentrations over 
3 months) of 6∙5% or higher.35 Despite eff orts to 
standardise diagnosis of type 1 diagnosis, the causes and 
typology remain unclear. Particularly among adults, 
diagnosis of type 1 versus type 2 diabetes can be 
challenging. Around 5–15% of adults diagnosed with 
type 2 diabetes might actually have type 1 disease with 
islet autoantibodies present;36 if this is the case, perhaps 
as many as 50% of actual type 1 diabetes cases are 
misdiagnosed as type 2, meaning that the number of 
cases of type 1 disease is vastly underestimated. Accurate 
diagnosis of this disorder is crucial for optimum care 
and avoiding complications, and correctly noting 
diabetic ketoacidosis at diagnosis of type 1 disease 
represents a key window for survival.37 

Attempts to distinguish adult cases of type 1 diabetes 
from those with type 2 disease have resulted in the 
proposal of new disease classifi cations, including latent 
autoimmune disease of adults (LADA) and ketosis-prone 
diabetes.38,39 The lack of fi rm diagnostic criteria for LADA, 

including retrospective criteria and similarities between 
patients with type 1 diabetes and LADA, have stunted 
enthusiasm for adopting it as a novel category for diabetes.40 

Disease heterogeneity
Most cases of type 1 diabetes represent an immune, if not 
autoimmune-mediated disorder, meaning patients often 
show features of an immunological contribution to 
disease pathogenesis (eg, autoantibodies or genetic 
associations with genes controlling immune responses). 
However, not all patients with type 1 diabetes have these 
characteristics, leading to proposed classifi cations of 
type 1A (autoimmune) diabetes,41 for the 70–90% of 
patients with type 1 disease that have immunological, 
self-reactive autoantibodies, and type 1B (idiopathic) 
diabetes, representing the remainder whose specifi c 
pathogenesis remains unclear.42 A subset of individuals 
within this latter group have monogenic forms of 
diabetes, such as maturity onset diabetes of the young 
(MODY).43 Despite knowledge gains that could allow for 
adopting this new set of terminologies for subgrouping 
cases of type 1 diabetes, the terms type 1A and type 1B 
diabetes are not commonly used; similarly, subtypes of 
type 2 diabetes in children are poorly characterised, 
particularly in minority populations in the USA.44 

Other factors that complicate diagnosis of type 1 
diabetes include the growing problem of obesity (both 
childhood and adult), diffi  culties in health-care provider 
recognition of disease, and increasingly diverse genetic 
admixtures due to migration and social changes.45–47 For 
example, a third to half of Hispanic and African American 
children seem to have a form of type 1 diabetes without 
islet autoantibodies, and with pancreatic histology 
showing a lack of islets and complete loss of β cells—ie, 
pseudoatrophic islets.42 A 2011 study of adult-onset type 1 
diabetes suggested that autoimmune type 1 diabetes in 
children and adults diff ers by just a few age-dependent 
genetic eff ects;48 however, overall, type 1 diabetes seems 
to represent a heterogeneous disease whose pathogenic 
processes, genetics, and phenotypic characteristics show 
marked variation. 

Pathophysiology
Most research articles on the pathogenesis of type 1 
diabetes begin by noting that the disorder results from an 
autoimmune destruction of insulin-secreting pancreatic 
β cells. The presence of a chronic infl ammatory infi ltrate 
that aff ects pancreatic islets at symptomatic onset of 
type 1 diabetes is the basis of this observation (fi gure 2).49 
Another dogma is that in patients with longstanding 
disease, the pancreas is devoid of insulin-producing cells 
and the remaining β cells are incapable of regeneration. 
Both of these concepts of pathogenesis of type 1 diabetes 
have been debated.50,51 Recent data suggest that although 
most patients with longstanding type 1 diabetes have few 
β cells, if any, there is evidence for β-cell regeneration in 
infants and very young children (but not in adolescents or 

0·1–9·4
9·5–18·6
18·7–31·4
31·5–43·1
43·2–57·6
No data

A

B

1950 1960 1970 1980 1990 2000
0

10

20

30

40

50

60

70

N
ew

 ca
se

s p
er

 1
00

 0
00

 p
eo

pl
e 

pe
r y

ea
r

Finland
Sweden
Colorado, USA
Germany

Figure 1: Incidence of type 1 diabetes in children aged 0–14 years, by geographical region and over time
(A) Estimated global incidence of type 1 diabetes, by region, in 2011.11 (B) Time-based trends for the incidence of 
type 1 diabetes in children ages 0–14 years in areas with high or high-intermediate rates of disease.12–15 
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adults).51,52 Much of what we understand about the 
pathogenesis of type 1 diabetes derives from analysis of 
pancreatic specimens, serum, and peripheral-blood 
lympho cytes obtained from patients with the disorder.53,54 
Studies of these constituents suggest that a series of 
functional defects in the bone marrow and thymus, 
immune system, and β cells collectively contribute to the 
pathophysiology of type 1 diabetes (fi gure 3). 

Pancreatic pathology
Most studies of pancreatic pathology of type 1 dia-
betes involve retrospective, sample-based analysis of 

pancreata obtained at autopsy from individuals who 
died at or near the time of diagnosis, revealing a range 
of islet cell and whole organ features (fi gure 2). To 
overcome limitations with investigations of autopsy 
tissue, and to extend studies of pancreatic pathology 
throughout the natural history of type 1 diabetes, eff orts 
are being made in Belgium, Finland, and the USA 
(Network for Pancreatic Organ Donors with Diabetes 
[nPOD]57) to collect tissues from cadaveric donors with 
serological evidence of anti-islet autoimmunity (ie, 
type 1 diabetes-associated autoantibodies)—a subset of 
whom would presumably have developed type 1 diabetes 

Figure 2: Pathological characteristics of the pancreas in type 1 diabetes 
(A) Islet infi ltrate (ie, insulitis) seen in a patient with recent-onset type 1 diabetes. Immunohistochemistry shows the intra-islet presence of CD3-positive cells (brown) 
and glucagon-producing alpha cells (pink). Image courtesy of M Campbell Thompson, University of Florida, Gainsville, FL, USA. (B) Histological features of islets and 
(C) gross pathological characteristics of the pancreas associated with the natural history of type 1 diabetes (ie, preonset, onset, postonset).
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Figure 3: Physiological contributions to the pathogenic processes that underlie type 1 diabetes 
A series of defects emanating from (A) the bone marrow and thymus, (B) immune system, and (C) β cells collectively lead to loss of insulin production by 
autoimmune mechanisms. These actions are continuous throughout the natural history of type 1 diabetes.2,54–56 Teff =eff ector T cell. Treg=regulatory T cell. 
APC=anaphase-promoting complex. 
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if they had survived. Additionally, the nPOD eff ort 
attempts to extend investigations to the entire pancreas, 
rather than be limited by use of a biopsy sample. 
Through these and other studies, analyses of pancreata 
from individuals with recent-onset type 1 diabetes 
suggest that around 70% of islets display complete 
insulin absence;51,52 nearly 20% of insulin-containing 
islets, as opposed to only 1% of insulin-defi cient islets, 
are infl amed (ie, insulitis), and many pancreata have 
non-infl amed insulin-containing islets that seem to be 
normal.58,59 In patients with type 1 diabetes with 
surviving β cells, insulitic lesions are usually lobular, 
analogous to the lobular loss of melanocytes in vitiligo.60 
Although it is often stated that symptoms occur when 
90–95% of β cells are lost, diagnosis of type 1 diabetes 
can occur when roughly two-thirds of the islets are 
devoid of insulin-producing cells.61,62 Among individuals 
who have had type 1 diabetes for more than 5 years, 
most of the remaining islets are insulin defi cient, 
containing a normal complement of other hormone-
secreting cells (ie, α cells that secrete glucagon, δ cells 
that secrete somatostatin, and PP cells that secrete 
pancreatic polypeptide).62 Thus, type 1 diabetes involves 
a selective loss of β cells. In terms of potential 
pathogenic mechanisms, CD8+ T cells are the most 
predominant population within the insulitis lesion, 
followed by (in declining order) macrophages (CD68+), 
CD4+ T cells, B lymphocytes (CD20+), and plasma cells 
(CD138+).62 Surprisingly, FOXP3+ cells (ie, regulatory 
T cells; a population of intense research interest2) and 
natural killer cells are rare in this lesion. Although 
much focus has been directed at infl ammatory-cell com-
position, other pancreatic features in type 1 diabetes 
could have pathogenic signifi cance (fi gure 3). One of 
the most underappreciated aspects of disease might be 
pancreatic size. Recent eff orts suggest that at the time of 
diagnosis of type 1 diabetes, and in the period before 
disease onset (ie, autoantibodies are present), aff ected 
individuals have a smaller pancreas compared with age-
matched, BMI-matched, and age-plus-BMI-matched 
individuals.63,64 This feature, combined with the absence 
of insulitis, suggests that multiple mechanisms lead to 
the loss of β cells in the pathogenesis of type 1 diabetes.

Serological
A key distinguishing feature between type 1 and type 2 
diabetes is the presence of autoantibodies against β-cell 
autoantigens. More than 90% of individuals with newly 
diagnosed type 1 diabetes have one or more of the 
following autoantibodies at disease onset:53 those reactive 
to insulin (IAA), glutamic acid decarboxylase (GADA), 
insulinoma-associated autoantigen 2 (IA2A), and zinc 
transporter 8 (ZnT8A).65 These autoantibodies can appear 
as early as 6 months of age, with a peak incidence before 
2 years of age in genetically susceptible individuals;66 
thus, they are present months to years before sympto-
matic onset. In addition to having diagnostic value in 

type 1 diabetes, autoantibodies can help identify people 
with an increased risk for developing the disease, 
through detection in fi rst-degree relatives or in the 
general population. IAA concentration correlates with 
the rate of progression to overt type 1 diabetes in children 
followed from birth.67,68 This fi nding, combined with an 
extensive series of independent investigations in humans 
and in rodent models of type 1 diabetes, support the 
growing notion that proinsulin is a key autoantigen in 
the disease;69 a concept that might partly explain the 
selective β-cell loss in type 1 diabetes. 

Lipid and metabolite profi les can also serve as markers 
for impending type 1 diabetes; these markers include 
decreased phosphatidylcholine at birth, and reduced 
triglycerides and antioxidant ether phospholipids 
followed by increased proinfl ammatory lysophosphatidyl-
choline several months before seroconversion to auto-
antibody positivity.70 Another study found higher 
con  cen trations of odd-chain triglycerides and poly-
unsaturated fatty acid-containing phospholipids, and 
lower concentrations of methionine, in those who 
developed type 1 diabetes-associated autoantibodies.71  

Genetics
Type 1 diabetes is clearly a polygenic disorder, with nearly 
40 loci (so far) known to aff ect disease susceptibility.72 
The HLA region on chromosome 6 (ie, the IDDM1 locus) 
provides perhaps one-half of the genetic susceptibility 
that leads to risk of type 1 diabetes.73 Of the many HLA 
types, HLA class II show the strongest association with 
type 1 diabetes, where haplotypes DRB1*0401-DQB1*0302 
and DRB1*0301-DQB1*0201 confer the greatest suscept-
ibility, and DRB1*1501 and DQA1*0102-DQB1*0602 
provide disease resistance.74 Class I MHCs also seem to 
infl uence risk for type 1 diabetes, indepen dent of class II 
molecules.73 Of the remaining loci, only those for the 
insulin VNTR, PTPN22, CTLA4, and IL2RA are asso-
ciated with odds ratios greater than 1∙1.75 Most of the loci 
associated with risk of type 1 diabetes are thought to 
involve immune responses,72 supporting the notion that 
the genetic infl uences involve mechanisms that collec-
tively contribute to aberrant immune responsive ness, 
includ ing the development and maintenance of toler-
ance. This mechanism might help explain the diff ering 
rates of progression to type 1 diabetes in adults versus 
children, where only minor variations in genetic suscept-
ibility have been noted.48 Genetic susceptibility might 
also infl uence responses to environmental stimuli or 
physiological pathways (eg, vitamin D and interferon-
induced helicase).29,76 

Natural history
A model originally posed in 1986,77 updated in our 2001 
article,78 and modifi ed subsequently, poses that indiv-
iduals are born with various degrees of genetic sus-
ceptibility for type 1 diabetes. Although this model has 
stood the test of time, some modifi cations should be 
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considered due to knowledge gains (fi gure 4). For 
example, environmental infl uences might occur as early 
as in utero and probably continue during the fi rst 
months to years of life, thereby aff ecting the onset and 
continuance of β-cell auto immunity. Physiological 
events, including immune-system develop ment and 
normal turnover of β cells, might also contribute to 
these pathogenic processes.55 Inherent immune dys-
regulation, probably facilitated by genetic suscept-
ibility, results in early serological evidence of β-cell 
destruction—ie, altered aminoacids and auto antibodies 
associated with type 1 diabetes. In most individuals, 
changes in insulin secretion and glucose tolerance 
occur months to decades after multiple islet auto-
antibodies are detected.79 Not all individuals with anti-β-
cell autoimmunity progress to overt disease (less than 
5% who express a single type 1 diabetes-associated 
autoantibody progress41), for reasons unknown. Meta-
bolic changes in the natural history of type 1 diabetes 
are marked by decreased early C-peptide response at 
least 2 years before onset,80 increased glucose fl uc-
tuations as an individual approaches onset,81 and an 
overall linear rise, with a last-minute surge, in plasma 
glucose in the months before onset.82 Once a critical 
mass (not well defi ned) of β cells is destroyed, 
symptomatic onset occurs, and the need for exogenous 
insulin replacement begins. This symptomatic onset 

happens after a silent phase that lasts for months to 
many years, that could, in genetically susceptible indiv-
iduals with multiple autoantibodies, be considered 
asymptomatic type 1 diabetes. This classifi cation seems 
appropriate in view of the ongoing disease processes 
and the near certainty that such individuals will even-
tually become symptomatic (insulin dependent). The 
loss of β-cell mass probably aff ects the performance of 
remaining β cells and other islet cell types, as shown by 
functional (and structural) studies. This disease feature 
will probably have implications for detecting and 
defi ning the stage of decline and the eff ect of therapeutic 
interventions.83 After diag nosis, the ability to retain 
residual β-cell function (assessed by production of 
C-peptide) is heterogeneous, in terms of the time it 
takes to reach an undetectable stage and the number of 
patients who, despite decades with type 1 diabetes, 
retain the ability to produce C-peptide.84 Thus, disease 
hetero geneity is an important aspect of type 1 diabetes, 
and suggests a role for genetics, age at disease onset, 
and intensity of disease management on the ability to 
retain β-cell function. 

Management of type 1 diabetes
The discovery of insulin in 1921–22 was clearly the 
most signifi cant therapeutic event in the history of 
type 1 diabetes; however, exogenous insulin replacement 
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does not always provide the metabolic regulation 
necessary to avoid one or more disease associated-
complications (eg, retinopathy, neuropathy, cardio-
vascular disease, and hypoglycaemia). As a result, 
dia betes management in modern countries often 
includes use of insulin analogues and mechanical tech-
nologies (eg, insulin pumps and continuous glucose 
monitors) for improved treatment of type 1 disease.85 In 
the future, therapies that closer emulate the physiological 
role of the endocrine pancreas will, hopefully, improve 
lifestyles in addition to preventing complications. As a 
fi rst step, global disparities in insulin access and diabetes 
management must be addressed.

Present care
After initial diagnosis and metabolic stabilisation, some 
patients with type 1 diabetes retain the ability to pro-
duce endogenous insulin. Although this endogenous 
secretion is typically low, maintenance is important 
since it is associated with less retinopathy and less-
severe hypoglycaemia at later stages of the disease.86 
Therefore, preserving insulin secretion after disease 
onset is increasingly a therapeutic goal, and can involve 
intensive insulin therapy, mechanical technologies, or, 
as in several trials, immune intervention to disrupt 
β-cell destruction. C-peptide is secreted from β cells at a 
one-to-one ratio with insulin, and analysis of C-peptide 
concentration after disease onset shows that loss is 
more rapid in the fi rst year after diagnosis than in the 
second year.83 Furthermore, children and adolescents 
lose endogenous insulin production at a greater rate 
than do adults with type 1 diabetes.

Several methods exist for metabolic optimisation via 
insulin therapy. With multiple daily injections, a long-
acting insulin analogue provides basal insulin and a 
rapid-acting insulin is administered before meals, based 
on grams of carbohydrate consumed (ie, basal-bolus 
therapy). Over the past decade, use of continuous sub-
cutaneous insulin infusions (CSII; insulin pumps) has 
increased substantially.87 A randomised controlled trial 
in adults with type 1 diabetes reported lower HbA1C 
concentrations with sensor-augmented pump therapy 
than with injection therapy, and a greater proportion of 
patients reaching the targeted levels of HbA1C.

88 A meta-
analysis has also shown that insulin pumps lower HbA1C 
concentrations more than multiple daily injections in 
adults with type 1 diabetes, with similar rates of hypo-
glycaemia.89 However, whether CSII is better, overall, 
than multiple daily injections for management of type 1 
diabetes is debated, since outcomes reported in studies 
have varied substantially.90

In addition to improved insulin preparations and 
delivery systems, advancements to enhance glycaemic 
control and lessened hypoglycaemia include point-of-
care HbA1C measurements, self-monitoring blood-
glucose reports, and real-time continuous glucose 
monitors. Tamborlane and colleagues91 reported that a 

real-time continuous glucose monitoring system 
decreased the amount of time spent in hypoglycaemia 
(<4 mmol/L [70 mg/dL]) and lowered HbA1C when used 
by patients an average of 6 days a week. In this study, the 
degree of HbA1C reduction directly correlated with higher 
HbA1C concentrations before beginning continuous 
glucose monitoring. In a second study, continuous 
glucose monitoring lowered nocturnal hypoglycaemia in 
children (<18 years) with type 1 diabetes, compared with 
self-monitored blood glucose.92 Therefore, continuous 
glucose monitoring is most appropriate for highly 
motivated patients with type 1 diabetes who are willing to 
wear the monitoring device, and those with continuous 
poor control during intensive insulin therapy.93

With insulin pumps and continuous glucose monitor-
ing improving diabetes care, these two technologies are 
now being used together as sensor-augmented pump 
therapy. A trial comparing a sensor-augmented pump 
with multiple daily injection therapy showed signifi cant 
improvement in HbA1C reduction with less hypoglycaemia 
in the sensor-augmented pump cohort.88,94 Although 
current sensor-augmented pump therapy uses each 
device independently, integration of both systems is 
being investigated. A key element for such eff orts 
involves low-glucose suspend systems that monitor 
blood glucose with a continuous glucose monitor and 
suspend insulin delivery when glucose falls below a 
preset threshold for up to 2 h, to prevent hypoglycaemic 
episodes.95 Low-glucose suspend systems are currently 
available for clinical use in Europe, but remain in clinic 
trial testing in the USA.

Future care
Insulin pumps and continuous glucose monitors are 
making substantial progress in diabetes care, with 
additional improvements on the horizon. Eff orts are 
underway to combine insulin pumps and continuous 
glucose monitors with a computer algorithm—ie, an 
integrated closed-loop system, or artifi cial pancreas 
(fi gure 5). The integrated closed-loop systems tested so 
far have reported favourable results;97 when comparing 
the safety and effi  cacy of overnight closed-loop delivery of 
insulin with conventional insulin-pump therapy in 
adults with type 1 diabetes, closed-loop delivery improved 
overnight control of glycaemia and reduced the risk of 
nocturnal hypoglycaemia.98,99 It is hoped that newer 
generations of continuous glucose monitors will have 
improved signal transmission and accuracy, and avoid 
the need for fi nger-stick glucose calibration.

New insulin analogues, incretins, and other hor-
mones are being investigated for their ability to improve 
management of type 1 diabetes. Examples include 
insulin degludec (recently approved for use in the EU, 
although approval declined by the US Food and Drug 
Administration), an analogue that might improve basal 
insulin administration in patients with type 1 diabetes, 
since it provides eff ective glycaemic control and reduces 
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the risk of nocturnal hypoglycaemia.100 GLP-1 might 
also prove benefi cial, with studies noting that this 
incretin decreased peak postprandial glucose by 45% 
regardless of residual β-cell function.101 The hormone 
pramlintide has been shown to reduce postprandial 
hyperglycaemia, bodyweight, insulin dosage, and HbA1C 
concentrations, and to reduce postprandial glucagon 
and glucose excur sions and slow gastric emptying.102 
Leptin, the adipocyte hormone, might also benefi t 
type 1 diabetes therapy via its ability to reverse a 
catabolic state through suppression of hyper gluca-
gonaemia.103 Amidst the optimism sur rounding poten-
tial benefi ts with these new therapies, the need for 
long-term studies validating their safety in large popu-
lations remains. 

Burden of type 1 diabetes: complications, excess 
mortality, and insulin access
The physical, social, and economic costs of type 1 diabetes 
are diffi  cult to calculate, and attempts to quantify these 
variables typically do not distinguish between type 1 and 
type 2 disease. However, two studies have provided cost 
estimates specifi cally for type 1 diabetes, proposing an 
annual fi gure of $14∙4–14∙9 billion in the USA.104,105 
Regardless of the fi nancial costs, achieving normo-
glycaemia is an important therapeutic goal for patients 
with type 1 diabetes, especially for avoiding complications. 

Complications associated with type 1 diabetes
Complications in type 1 (and type 2) diabetes are classi-
fi ed as macrovascular or microvascular. Cardio vascular 

disease is becoming a more common macro vasular 
complication as individuals with in type 1 diabetes live 
longer.106 Individuals with type 1 diabetes have a ten-times 
higher risk for cardiovascular events (eg, myocardial 
infarction, stroke, angina, and the need for coronary-
artery revascularisation) than age-matched non-diabetic 
pop ul ations.107 The Pittsburgh Epidemiology of Diabetes 
Complications study108 of type 1 diabetes reported cardio-
vascular events in adult patients younger than 40 years of 
age to be 1% per year, and three times higher in 
individuals older than 55 years. The Epi demiology of 
Diabetes Interventions and Compli cations (EDIC) 
study,109 which followed participants with type 1 diabetes 
for long-term complications, found intensive diabetes 
treatment reduced the risk of cardiovascular events by 
42% compared with conventional treatment. Patients 
with type 1 diabetes have less favourable out comes than 
non-diabetic patients after an acute coronary event,110 a 
fi nding that might be explained by a recent report that, 
after myocardial infarction, patients with type 1 diabetes 
express antibodies to cardiac proteins, whereas patients 
with type 2 diabetes do not.111 The risk for microvascular 
complications, including retinopathy, nephropathy, and 
neuropathy, decreases with intensive insulin therapy. 
Over the past 5 years, several large clinical trials have 
advanced the prediction and preven tion of microvascular 
complications (table 1).

Access to insulin
Despite the progress made for treatment of type 1 
diabetes, individuals in many parts of the world die 

Glucose
sensor

Insulin
pump

Individual

Algorithm
controller

Meal

Delay (30–100 min) in 
insulin absorption

Need for 
improved 
insulin 
kinetics

Adjust insulin dosing 
based  on glucose 
fluctuations

• Compensation for delays, errors, and noise 
• Safeguards against insulin overdose and underdose
• Appreciate patient characteristics (eg, exercise, behaviours)

Delay in insulin action 
20 min periphery 
100 min liver

Correct for: 
• Time lag 
• Errors and noise 
• Blood versus

interstitial values

Delay (5–15 min) in interstitial 
plasma sensing

BA

Glucose sensor

Insulin pump

Algorithm

Figure 5: Closed-loop system for type 1 diabetes therapy (artifi cial pancreas)
(A) Prototype of a closed-loop system.96 (B) Components of a closed-loop system. Three potential delays in the system include glucose sensing in interstitial fl uid, 
insulin absorption (depends on use of rapid vs regular insulin), and insulin action in peripheral tissues and liver. 
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because of lack of access to insulin.122 For example, in 
Mozambique, the life expectancy for a newly diagnosed 
child with type 1 diabetes is 7 months.123 Inequalities in 
the availability of technologies to reduce complications, 
improve quality of life, and improve diabetes manage-
ment (eg, HbA1C testing and blood-glucose monitoring) 
also raise ethical concerns. Much public debate has 
centred on why the global community accepts this 
treatment disparity.124 Fortunately, organisations such as 
the International Diabetes Federation, Life for a Child, 
Insulin for Life, and others are developing means to 
alleviate this disparity.

Prevention and cure
Nearly three decades have passed since the fi rst immune-
based therapies, using ciclosporin, were attempted to 
reverse type 1 diabetes.125 Many practical and intellectual 
advances have been made since then, including improved 
metabolic testing, better understanding of disease patho-
genesis, and availability of immune markers.126 Eff orts to 
prevent or cure type 1 diabetes are now done via large 
collaborative networks (eg, NIH TrialNet, Immune 
Tolerance Network, and Islet Cell Transplantation Con-
sortium), with rigorous mechanistic assays and uni form 
protocols. Finally, although contro versial, thera peutic 
interventions have clearly benefi ted from studies in animal 
models of type 1 diabetes, particularly the NOD mouse.127

Primary and secondary prevention
Since type 1 diabetes is now a predictable disease, several 
large trials are investigating methods to prevent or delay 

the onset of disease. Primary prevention studies, in 
individuals with a genetic risk for type 1 diabetes but 
without islet autoantibodies, have largely focused on 
dietary modifi cations early in infancy. A study in 
Finland128 identifi ed 230 infants with a fi rst-degree 
relative with type 1 diabetes, and randomly assigned 
infants to receive a hydrolysed infant formula or con-
ventional formula whenever breast milk was not available 
during the fi rst 6–8 months of life. Children who received 
the hydrolysed formula were less likely to develop two or 
more islet autoantibodies compared with those who 
received the conventional formula, with an unadjusted 
hazard ratio of 0∙52.128 Another trial removed bovine 
insulin from infant formula and reported less progression 
(compared with infants who received normal cow’s milk 
formula) to the development of one islet autoantibody 
after 3 years of follow-up.129

Studies of secondary prevention, to delay onset of 
type 1 diabetes, are done in individuals with multiple 
islet autoantibodies but without overt hyperglycaemia. In 
one trial, individuals with at least two islet autoantibodies 
(one being an antibody against insulin) who had a fi rst-
degree relative with type 1 diabetes, received oral 
insulin.130 Overall, administration of oral insulin did not 
delay progression to overt diabetes, but a post-hoc 
analysis suggested that individuals with high titre insulin 
autoantibodies benefi ted from treatment—it was esti-
mated that diabetes onset was delayed as much as 
5 years.131 Other agents used for secondary prevention, 
nicotinamide and intranasal insulin, have not been 
shown to delay or prevent diabetes onset.132,133 

Complications 
assessed

Main fi ndings

Diabetes Control and Complications Trial 
(DCCT)/Pittsburgh Epidemiology of 
Diabetes Complications study (2009)112

Cardiovascular 
disease, nephropathy, 
retinopathy

The frequencies of serious complications in patients with type 1 diabetes, especially when 
treated intensively, are lower than those reported historically 

Finnish Diabetic Nephropathy (FinnDiane) 
Study (2009)113

Cardiovascular 
disease, nephropathy

In patients with type 1 diabetes, variations in glycated haemoglobin concentration 
predicted the incidence of microalbuminuria and progression to renal disease, and 
incidence of cardiovascular disease

DCCT/ Epidemiology of Diabetes 
Interventions and Complications (EDIC) 
study (2011)114

Nephropathy In patients with type 1 diabetes and persistent microalbuminuria, intensive glycaemic 
control, blood pressure control, and favourable lipid panels lead to fewer long-term renal 
complications

FinnDiane (2009)115 Nephropathy An independent and graded association exists between the presence and severity of 
kidney disease and premature mortality in type 1 diabetes

Genetics of Diabetes in Kidney Collection 
(2009)116

Nephropathy Identifi ed genes associated with susceptibility to diabetic nephropathy, near the FRMD3 
and CARS loci

Swedish Renal Registry (2010)117 Nephropathy Substantial diff erences in risk for nephropathy in male versus female patients with type 1 
diabetes, with age at diagnosis an important factor (early diagnosis lowers risk)

DCCT/EDIC (2009)118 Autonomic 
neuropathy

Patients given intensive insulin therapy had less cardiac autonomic neuropathy than 
those who received conventional treatment

Acetyl-L-carnitine Clinical Trials (2009)119 Neuropathy Raised triglycerides correlate with progression of diabetic neuropathy

DCCT/EDIC (2008)120 Retinopathy Intensive insulin therapy (vs  conventional therapy) reduces  development and 
progression of diabetic retinopathy, with a treatment-related diff erence (metabolic 
memory) continuing for at least 10 years

DIabetic REtinopathy Candesartan Trials 
(DIRECT; 2008)121

Retinopathy The angiotensin receptor blocker, candesartan, reduces retinopathy development but 
does not stop retinopathy progression

Table 1: Large-scale studies on prediction and prevention of complications associated with type 1 diabetes
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Reversal
Currently, there are no approved agents to stop the 
autoimmune destruction of β cells after diagnosis of type 1 
diabetes. In the past 5 years, interest in reversal of type 1 
diabetes has grown.134 In addition to preserving production 
of C-peptide, a key goal is to induce immune tolerance 
against β cells and thereby halt autoimmune destruction. 
Most approaches involve provision of self-antigen (eg, 
vaccination with specifi c islet-cell proteins, such as insulin 
or GAD) or immune suppression (table 2). Disappointingly, 
after promising phase 1–2 trials in patients with recent-
onset type 1 diabetes and detectable endogenous insulin 
production, phase 3 trials of anti-CD3 antibodies (otelixi-
zumab and teplizumab), and the Diamyd vaccine 
(GAD-alum immunotherapy) did not meet primary 
endpoints.135–141 Administration of DiaPep277, a synthetic 
immunomodulator, at 3-month intervals resulted in less 
of a decline in stimulated C-peptide concentrations at 
1 year in adults with type 1 diabetes than in the cohort that 
received placebo.142,143 Other phase 2 studies of immune 
modulators showed evidence of therapeutic effi  cacy in 
settings of recent-onset type 1 diabetes; however, even 
with continued use, most did not show durable eff ects. 
For example, the fusion protein CTLA4-Ig (abatacept) 
preserved stimulated C-peptide concentration for only 
9 months despite continuous intravenous adminis tra-
tion for 2 years.138 These results imply that single-agent 
immuno suppression alone might be insuffi  cient to 
completely control the autoimmune destruction of β cells, 
or that more specifi c and targeted therapies are needed. 
Combination therapies that target several pathogenic 
pathways and improve β-cell viability might be needed to 
preserve endogenous insulin production in patients with 
type 1 diabetes. A 2007 trial of autologous haemato-
poietic stem-cell transplantation combined with high-dose 
immuno suppression (ie, cytoxan and thymoglobulin) 
reported increased C-peptide production and insulin 
independence in most patients who received treatment at 
disease onset.144 However, the eff ects of this invasive treat-
ment waned over time, with loss of insulin independence 

in most patients after 5 years.145 It is crucial to re-examine 
the design and metabolic and immuno logical outcomes of 
these phase 2–3 trials, and to consider disease hetero-
geneity, to better understand how to approach reversal of 
type 1 diabetes.146,147 Additionally, testing agents that 
target infl ammation (eg, anakinra [interleukin-1 receptor 
antagon ist] and canakinumab [anti-interleukin-1b com-
pound]), alone or in combination could prove benefi cial.148

Islet-cell transplantation
In 2000, a breakthrough protocol was developed for islet 
transplantation without the use of glucocorticoids for 
immune suppression;149 the initially promising results 
deteriorated so that at 5 years, only 10% of patients 
remained independent of exogenous insulin.150 Therefore, 
islet transplantation remains an experimental procedure, 
with ongoing research focusing on new methods using 
biomaterials (eg, encapsulation), immune modulation, 
site of delivery, improved vascularisation, and more.151 
Many of the limitations for islet transplantation hold true 
for another promising area, the use of stem cells as 
insulin-producing surrogates for β cells. It remains 
hopeful that an insulin-producing cell (stem cell, 
cadaveric islet, xenogeneic islet, etc), combined with an 
immuno protective barrier (ie, encapsulation) will provide 
a therapeutically meaningful advance.

Unanswered questions
This is a season of change with respect to understanding 
of the epidemiology, pathogenesis, treatment, and 
prospects for curing type 1 diabetes. In hindsight, many 
long-held goals once thought readily achievable have 
been diffi  cult to realise, and concepts regarded as dogmas 
have proven to be fl awed. 

Lessons learned
Despite the advances in type 1 diabetes research and 
therapy, some researchers and clinicians are disappointed 
by a perceived lack of progress. Large investments in 
terms of time, fi nances (foundation, government, and 

Study phase and year Main fi ndings

Insulin APL
(NBI-6042) 

Phase 2; 2009 No change in metabolic response (ie, C-peptide preservation)135

Anti-CD20
(rituximab)

Phase 2; 2011 Preservation of C-peptide concentrations at 1 year, but no diff erence from placebo at 
2 years136

Anti-CD3
(teplizumab) 

Phase 3; 2011 Although phase 2 studies showed preservation of C-peptide concentrations , phase I trials 
(Protégé study)137 showed no change in metabolic respons  and the study stopped early

CTLA4—immunoglobulin fusion 
protein (abatacept)

Phase 2; 2011 T-cell co-stimulatory modulation slowed reduction in β-cell function over 2 years, although 
preservation of C-peptide was seen for 9·6 months138

Anti-CD3
(otelixizumab) 

Phase 3; 2011 Although phase 2 studies showed preservation of C-peptide concentrations, a phase 3 trial 
showed no change in metabolic response139

GAD65 protein
(Diamyd)

Phase 3; 2012 Phase 2 studies reported preserved C-peptide concentration, with no improvements in insulin 
needs. Two phase 3 trials did not meet endpoints140,141

HSP60
(DiaPep277)

Phase 3; 2012 Phase 2 trials suggested increased C-peptide concentrations; a phase 3 trial noted C-peptide 
preservation at 1 year, but only in adults (age 16-45 years) with type 1 diabetes142

Table 2: Agents assessed as immunomodulatory therapy to reverse type 1 diabetes
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industry-based), and patient resources have been directed 
to several promising areas—ie, islet-cell transplantation, 
stem cells, genetics, primary and secondary disease 
prevention, and reversal of type 1 diabetes—with results 
that are often deemed to have limited benefi t.134 

Type 1 diabetes has proven to be much more resistant 
than initially expected to therapeutic interventions with 
conventional or experimental agents, whether the goal is 
disease prevention or reversal.152 Inability to overcome 
the autoimmune nature of this disease, perhaps the 
result of robust immunological memory combined with 
failure to attenuate deleterious immune responses that 
are not subject to normal regulation, is a hurdle that 
needs to be addressed with intense research. Similarly, 
islet-cell transplantation depends on overcoming 
recurrent autoimmunity and averting alloimmunity.153 
Additional hurdles for islet-cell transplantation include a 
limited donor pool and the need for chronic immuno-
suppression (or a method to induce long-term immuno-
logical tolerance) to allow for functional engraftment. To 
achieve progress with islet-cell trans plantation, investi-
gators are focusing on xeno transplantation, encapsu-
lation, novel sites for cell delivery (eg, eye), and 
develop  ment of surrogate insulin-producing cells.151

Investigations into the genetic basis of type 1 diabetes 
have been criticised for making little headway into 
understanding the pathogenesis of this disease. The 
polygenic nature of type 1 diabetes (more than 40 loci 
have been associated with disease susceptibility or 
resistance72) combined with environ mental associations 
mean that disease pathogenesis can be unpredictable. An 
additional complication arises from the fact that although 
many genotypic associations with the disease exist, the 
specifi c phenotypes resulting from these genetic 
infl uences are largely unknown. Eff orts are underway to 
assign specifi c phenotypes to genotypes, and to improve 
understanding of the genetic risk for type 1 diabetes by 
genotyping at multiple susceptibility loci.154

Diffi  culty understanding the genetic complexity of 
type 1 diabetes is compounded by a lack of knowledge 
regarding the immune response in this disorder. 
Despite decades of investigation, the mechanisms by 
which β cells are eliminated or selectively destroyed 
(apart from antigen-specifi c immune responses) remain 
unclear.55 Over the past decade, investigators have 
devoted much eff ort to describing the putative role for 
adaptive, rather than innate immune responses, in 
terms of their pathogenic contributions to type 1 
diabetes. Understanding the innate and adaptive 
immune response, and the role of β cells in the 
pathogenesis of type 1 diabetes, will be crucial for 
development of improved therapies. Fortunately, well 
organised trial networks (eg, NIH TrialNet and Immune 
Tolerance Network) and registries (eg, T1D Exchange) 
can test agents capable of providing therapeutic benefi t, 
improve patient recruitment, and increase the precision 
of disease prediction.155 Additional modifi cations that 

could improve the applicability of type 1 diabetes 
research include changes in clinical trial design (eg, 
adaptive trial design),156 identifying more practical 
therapies (in terms of fi nance and delivery of public 
health care), better defi ning disease heterogeneity,147 
utilising animal models of type 1 diabetes more 
eff ectively,127 and applying the concept that type 1 
diabetes begins long before symptomatic onset. 
Redefi ning type 1 diabetes as having a silent or 
asymptomatic state (eg, multiple auto antibodies, genetic 
risk, with varying degrees of dysglycaemia) could allow 
therapeutic interventions to be given earlier in the 
natural history of disease when they might be more 
eff ective. This concept is based on studies in animal 
models of type 1 diabetes, where earlier interventions 
seem to be more effi  cacious, and the belief that 
intervention before a critical threshold of remnant β-cell 
mass is lost would avoid several sequelae that are often 
present at symptomatic onset (eg, glucose toxicity, stress 
response, etc). 

Where do we go from here? 
Knowledge voids that have long existed for type 1 
diabetes, unfortunately, remain today. The most pressing 
questions are: what environmental constituents un-
equivocally contribute to the formation of type 1 diabetes? 
In what way does genetic susceptibility contribute to 
disease development? Can a safe and eff ective closed-
loop therapy system be developed? What drugs should be 
used in attempts to prevent or reverse type 1 diabetes? 
Are agents capable of instilling long-term immunological 
tolerance available? Can improved markers for predicting 
disease development be obtained? Can β-cell replication 
and neogenesis be safely induced in humans? Finally, 
why are pancreatic β cells specifi cally targeted for 
destruction, and do inherent processes contribute to 
their demise? These questions form a roadmap for 
the next generation of investigations, and if properly 
addressed, should result in substantial improve ments in 
the lives of individuals burdened with type 1 diabetes.
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