SILENT SPRING INSTITUTE

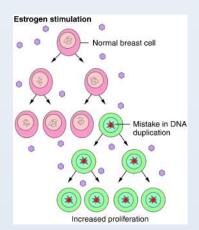
RESEARCHING THE ENVIRONMENT AND WOMEN'S HEALTH

Predicting Toxicity: Silent Spring Institute's High-throughput Screens for Chemicals Related to Breast Cancer

Margaret Kripke, Cancer Prevention and Research Institute of Texas Ruthann Rudel, Silent Spring Institute Paul Yaswen, Lawrence Berkeley Labs

> Collaborative on Health and the Environment November 12, 2015

What do established breast carcinogens teach us about how chemicals might increase risk?

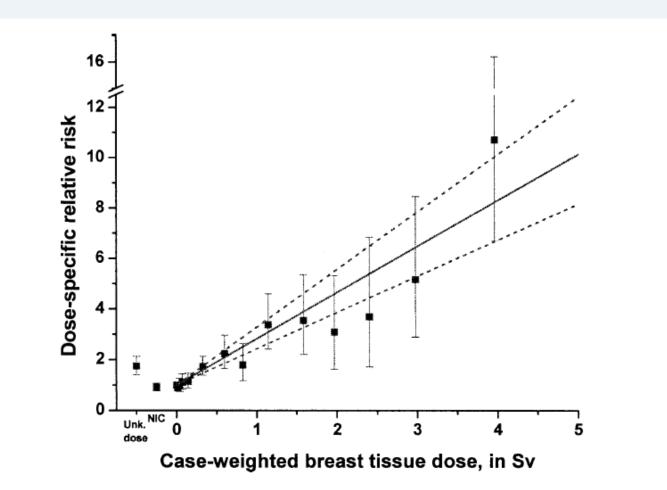


How might chemicals increase breast cancer risk?

After

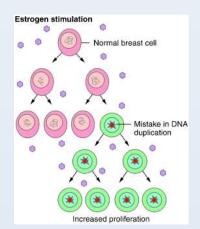
- Damaging DNA
 Ionizing radiation
 - Promoting tumor growth
 HRT

Before



 Disrupting development -> vulnerability
 DES

Ionizing radiation and breast cancer

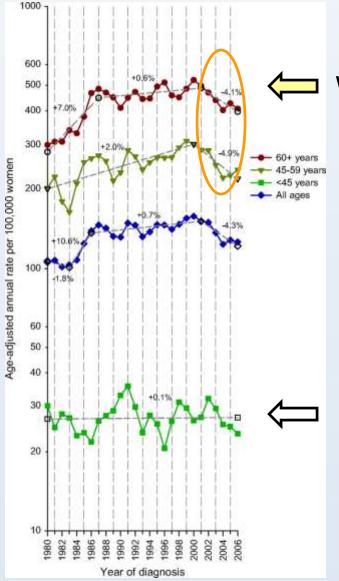

FIG. 1. Estimated relative risk of breast cancer, with 90% confidence limits, by exposure status and radiation dose, with fitted linear dose response for exposed subjects with dose estimates. All ages combined.

How might chemicals increase breast cancer risk?

After

- Damaging DNA
 Ionizing radiation
 - Promoting tumor growth
 HRT

Before



 Disrupting development -> vulnerability
 DES

Age-adjusted annual incidence rates for invasive breast cancer at Kaiser Permanente Northwest

Glass, A. G. et al. J. Natl. Cancer Inst. 2007 99:1152-1161

Prevention is powerful!

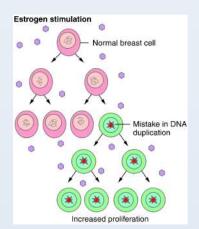
Women 45+

Breast cancer incidence dropped among older women after study showed risks of HRT.

Women < 45

Subsequent economic analysis by Roth et al. 2014

The WHI scenario resulted in:


- -4.3 million fewer cHT users
- -126,000 fewer breast cancer cases
- -expenditure savings of \$35.2 billion

How might chemicals increase breast cancer risk?

After

- Damaging DNA
 Ionizing radiation
 - Promoting tumor growth
 HRT

Before

 Disrupting development -> vulnerability
 DES

Diethylstilbestrol (DES)

Prescribed to pregnant women in 1940s-60s

60+ years to develop human evidence of breast cancer link The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Adverse Health Outcomes in Women Exposed In Utero to Diethylstilbestrol

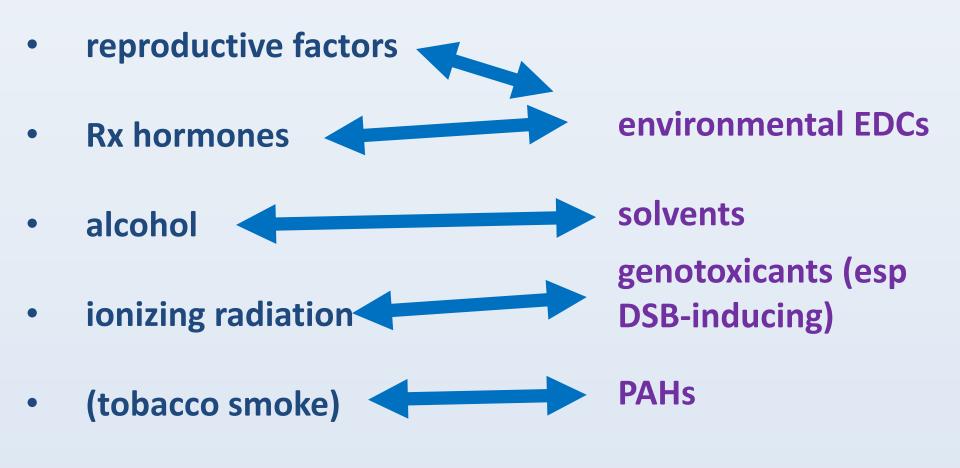
Hoover et al, 2011

Breast cancer risk factors

- Family history
 <u>Carcinogens / Hormones</u>
- Ionizing radiation
- Reproductive history menarche, menopause, births
- Overweight after menopause
- Pharmaceutical hormones: HRT, DES
- Alcohol
- Lack of physical exercise
- Tobacco smoke
- Shift work

We compiled 216 rodent mammary carcinogens

www.silentspring.org/sciencereview


Rudel et al. 2007

Similarities between established risk factors and potential breast carcinogens

Animal and human studiesgenerally consistent

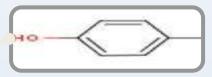
Exposure	Human Breast	Rodent Mammary			
	Cancer	Tumors			
HRT (E + P)	+	+			
HRT (E)	(+)	+			
Oral Contraceptives (E + P)	+	+		Stronger	
DES	+	+	+	evidence of	
Griseofulvin, Furosamide,	(+)	+		association	
Metronidazole	(')			Limited	
Indomethacin, Nitrofurantoin	(-)	+	(+)	evidence of	
Ionizing radiation	+	+	(.)	association	
Alcohol	+	(+)			
Heterocyclic amines (meat)	(+)	+		Limited	
Sleep disruption	(+)	+	(-)	evidence for no	
Ethylene oxide	(+)	+		association	
РАН	(+)	+		Stronger	
Solvents	(+)	+	-	evidence for no	
DDE (adult exposure)	-	-		association	
DDT (early life exposure)	(+)	Not tested			
PCBs (general population)	-	-		et al. 2014. Environme	ntal
PCBs (polymorphism)	(+)	Not tested	Health	Perspectives	
Dioxin (early life exposure)	(+)	(+)		12	

What does chemical safety testing have to do with breast cancer?

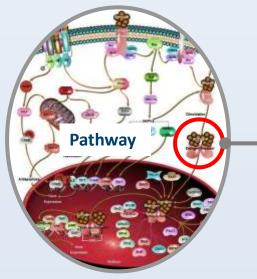
Goals

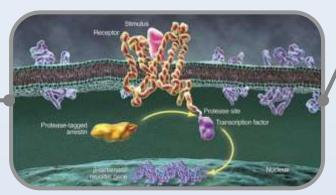
- chemicals evaluated for safety
- tests relevant to breast cancer

Approach: By studying biological mechanisms of agents that increase breast cancer risk, induce rodent mammary tumors, or alter cancer susceptibility, we can learn to predict risks from chemicals that we can't study directly.

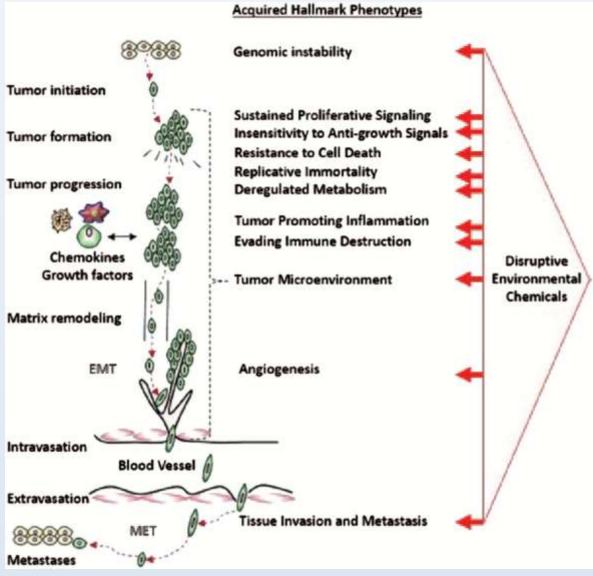

Revolution in toxicology – high throughput screening

Robots




96-, 384-, 1536 Well Plates

Chemical Exposure

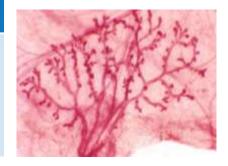


Target Biology (e.g., Estrogen Receptor)

Cell Population

Halifax Project – Redefining Carcinogens

Events in biological processes potentially associated with breast cancer


Collul	lar 0	Ma	000	ar	Eugete
Jellu	iar a		lecu	ar	Events

Alterations in hormone levels, metabolism or receptors Changes in gene transcription & translation Cell cycle changes Peptide hormones (growth hormones) Genotoxicity Oxidative stress Immune modulation Limitless replication potential Evasion of apoptosis Self-sufficiency in growth

Tissue Changes

Breast density Tissue invasion Sustained angiogenesis TEB proliferation Altered mammary gland development Ductal hyperplasia Atypical hyperplasia

Susceptibility Factors

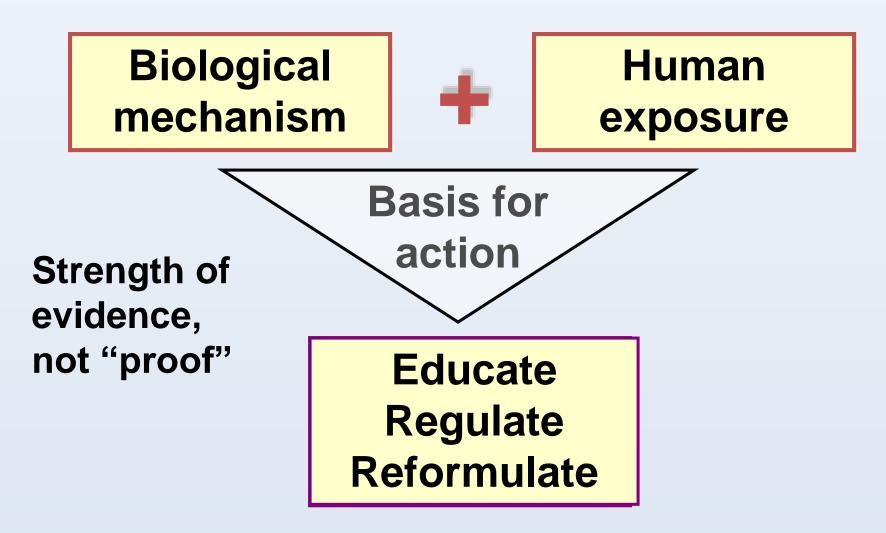
Obesity Early onset of breast development Alterations in cyclicity Genetic polymorphisms in metabolizing enzymes Duration of lifetime

estrogen exposure

Schwarzman et al. 2015. Environmental Health Perspectives

Breast cancer-related endpoints in EPA's ToxCast

Steroid hormones


Schwarzman et al. 2015, EHP

	Covered ERa; AR; estrogen metabolism; steroid intermediates	Some gaps ERb Progesterone receptor Aromatase	
01	ther endocrine (molecular)		
	Covered Thyroid receptor, AhR, PPAR, ROR; glucocorticoid	Some gaps ERR	No assays Other thyroid endpoints; Her2; prolactin
Ca	arcinogenesis		
	Covered Inflammation, xenobiotic metabolizing enzymes, cellular stress; other cancer hallmarks	Some gaps Genotoxicity	

Mammary gland development & other organism-level endocrine effects

We don't know how to study these in vitro!MG morphology; hormone receptors in developing MG; reproductivedevelopment; circulating hormone levelswww.silentsp

Cancer Prevention Science

THANK YOU

Collaborators

- Janet Ackerman, Julie Brody, Silent Spring Institute
- Chris Vulpe, UC-Berkeley, now U Florida
- Paul Yaswen, Lawrence Berkeley Labs
- Megan Schwarzman, UC Berkeley Center for Green Chemistry
- Keith Houck and others at US EPA, NCCT
- Ray Tice and others at US National Toxicology Program

Funders

- California Breast Cancer Research Program – Special Research Initiatives
- Avon Foundation for Women

Thank you! Visit www.silentspring.org

SILENT SPRING INSTITUTE

Press Room | FAQs | Support Our Work | Contact Us | Home

ABOUT US BREAST CANCER AND THE ENVIRONMENT

ENT OUR RESEARCH

OUR PUBLICATIONS OUR TOOLS TAKE ACTION

p.s. We're hiring!

- Data Science and Informatics
- Chemistry, Biochemistry and Biomonitoring
- Molecular Biology and Toxicology

FORGING NEW FRONTIERS IN ENVIRONMENTAL RESEARCH TO PREVENT BREAST CANCER

A GALA CELEBRATION OCTOBER 20, 2015

With Guest Speaker Siddhartha Mukherjee, M.D., Ph.D. author, The Emperor of All Maladies: A Biography of Cancer

FEATURED RESEARCH

NEW Lower doses of common product ingredient might increase breast cancer risk.

Study measures carcinogenic flame retardants in people

Study identifies priority breast carcinogens and biomonitoring methods

CONNECT WITH US

Get the latest news and tips for prevention.

email address:		
zip code:		
SIGN UP		
Follow Us f	You Tube -	21