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The ability of environmental factors to promote a phe-
notype or disease state not only in the individual
exposed but also in subsequent progeny for successive
generations is termed transgenerational inheritance.
The majority of environmental factors such as nutrition
or toxicants such as endocrine disruptors do not
promote genetic mutations or alterations in DNA
sequence. However, these factors do have the capacity
to alter the epigenome. Epimutations in the germline
that become permanently programmed can allow trans-
mission of epigenetic transgenerational phenotypes.
This review provides an overview of the epigenetics
and biology of how environmental factors can promote
transgenerational phenotypes and disease.

The current paradigm for disease etiology is that the
presence of a genetic mutation, polymorphism or chromo-
somal abnormality promotes disease. Although this is a
crucial component of disease, the environment is an
equally important consideration in disease etiology
(Figure 1). Because the genome is evolutionarily and
chemically stable, the ability of the environment to influ-
ence or promote disease does not generally involve DNA
mutations. Therefore, environmental factors must gener-
ally regulate genome activity independent of DNA
sequence manipulation (e.g. epigenetics). An additional
consideration for environmental influences on disease
etiology is the developmental stage of exposure. Exposures
during a crucial time of development can alter genome
activity associatedwith the differentiation programming of
cells or organ systems. This altered program and gene
expression profile can then promote an abnormal physi-
ology and disease at the later adult stage of development.

A large number of epidemiology studies suggest that the
environment is a major factor in disease etiology [1,2].
Examples include phenomena such as the regional differ-
ences in disease frequency, the low frequency of the genetic
component of disease, the increase in the majority of
specific disease frequencies, the variability in disease fre-
quency between identical twins, and the large number of
environmental exposures that promote disease. This
review focuses on how environmental factors promote
adult-onset disease transgenerationally.

Environmental factors and disease
Epidemiology research suggests significant environmental
effects on disease. Each geographic region around the
world generally has a distinct disease frequency. For
example, some regions have high rates of prostate disease
and low rates of stomach disease (North America), whereas
others have low rates of prostate disease and high rates of
stomach disease (eastern Asia) [3,4]. If a person is moved
early in life from one region to the other, they often develop
the new region’s disease frequencies. Interestingly, when
identical twins develop in different geographic regions,
they also have different disease frequencies [5]. Therefore,
although the genetics is nearly identical, disease develop-
ment is different, suggesting an environmental influence
[6]. Another example is the dramatic and rapid increase in
nearly all disease frequencies over the past several decades
that cannot be explained through genetics alone. There are
also a large number of environmental compounds and
toxicants that have been shown to promote disease, but
most do not alter the DNA sequence [7]. Therefore,
environmental factors are crucial in the etiology of disease.

Although numerous environmental factors influence
and promote adult-onset disease (such as nutrition and
stress), this review focuses on endocrine disruptors, as this
group of environmental compounds is one of the largest
people are exposed to daily in society. Endocrine disruptors
are environmental chemicals that affect the function of the
endocrine system by mimicking or blocking the actions of
hormones, altering hormone signaling or disrupting hor-
mone production [8]. Endocrine disruption can have pro-
found consequences because of the crucial role hormones
have in development.

Several disease states are promoted by endocrine dis-
ruptors (Table 1). Many endocrine disruptors with repro-
ductive hormone actions (e.g. estrogen or androgen)
influence reproduction and fertility including bisphenol-
A (BPA), dichlorodiphenyltrichloroethane (the insecticide
DDT) and vinclozolin. Activation of the male and female
reproductive systems at an inappropriate time during de-
velopment by endocrine disruptor chemicals can alter
normal physiology [9]. For example, prenatal exposure
to diethylstilbestrol (DES) produces several developmental
abnormalities in the male mouse reproductive tract and
increases tumor incidence [10]. Embryonic exposure to the
pesticide methoxychlor during the period of sex determi-
nation affects the cellular composition of the embryonic
testis, and germ cell number and survival [11]. Embryonic
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testicular cord formation is also affected when embryos are
exposed in vitro to vinclozolin. Transient in utero exposure
to vinclozolin increases apoptotic germ cell numbers in the
testis of pubertal and adult animals, which correlates with
reduced sperm motility and number in the adult [12]. In
utero exposure to the plastic-derived compounds phtha-
lates also disrupts differentiation of androgen-dependent
tissues in male rat offspring [13]. A more recent example of
an endocrine disruptor is the plastic component BPA,
which acts as an estrogenic compound causing numerous
pathologies including prostate cancer in low doses [14].
Other examples include the plant-derived estrogenic com-
pounds (phytoestrogens) such as genistein, which influence
several reproductive organs [15,16]; aflatoxin-contami-
nated food, which has been correlated with the incidence
of liver cancer in Asia and Africa [17]; tobacco, which
contains cadmium, an estrogenic endocrine disruptor

(18), and whose use can cause reproductive problems in
addition to carcinogen-induced lung cancer. Heterocyclic
amines in well-cookedmeat products can result in cancer of
the colon, breast and stomach in consumers [19]. Abnorm-
alities in mouse testicular Leydig cells are induced by
chronic low dose exposure to arsenic [20]. Estrogen re-
ceptor-a promoter hypomethylation might play a role in
induction of hepatocellular carcinoma by arsenic exposure
in utero [21]. Therefore, it is apparent that a large number
of environmental compounds have endocrine disruptor
activity. How an early life exposure to an endocrine dis-
ruption can promote an adult-onset disease, long after the
compound is removed, is presumed to at least partly
involve the epigenetic mechanisms reviewed below.

Epigenetics
Although the history and definition of epigenetics has
evolved (Box 1), the majority of the molecular elements
of epigenetic regulatory processes have only been recently
elucidated [1]. The first epigenetic molecular factor ident-
ified was DNA methylation in the 1970s [22] (Table 2).
Significant focus was put on DNA methylation with the
analysis of X chromosome inactivation and imprinted
genes in the late 1980s and early 1990s [23]. The next
epigenetic element identified was histone modifications in
the mid 1990s and the appreciation of chromatin structure
in the regulation of the genome [24]. This was followed by
the identification of non-coding RNA around 2000 and the
first whole epigenome analysis in 2005 [25] (Table 2).
Epigenetic processes are likely to be expanded in the
future. For example, the recent identification of hydroxy-
methylcytosine residues in the brain is a new epigenetic
mark whose function remains to be elucidated [26]. These
epigenetic processes are equally important in regulating
genome activity (i.e. gene expression) and DNA sequence
(i.e. genetics).

A special category of genes called imprinted genes are
subject to epigenetic programming and can be influenced
by environmental exposures. For example, in vitro treat-
ment of preimplantation embryos with the contaminant
2,3,7,8-tetra-chlorodibenzo-p-dioxin alters DNA methyl-
ation in the H19 and IGF-2 imprinted genes [27]. From
an epigenetic perspective, imprinted genes are a special
class of genes because they have relatively unchanged
DNA methylation patterns over generations and are not

Figure 1. Proposed etiology of how the environment effects disease. The cascade

of molecular and physiological processes following an environmental exposure to

promote disease is shown.

Table 1. Common endocrine disruptors and their actions

Endocrine disruptor Effect Reference

DDT Reproductive failure [110]

Phytoestrogens (e.g. genistein) Impaired fertility, reproductive effects, breast cancer protection [15,16]

DES Vaginal cancer in humans [111–113]

Developmental toxicity in hamsters

Dicofol Abnormal ovarian follicles, high plasma estrogen levels [114]

BPA Prostate cancer [14,115]

Aflatoxin Liver cancer [17]

Cadmium Lung cancer, reproductive problems [18]

Heterocyclic amines Cancer of colon, stomach and breast [19]

Arsenic Liver cancer [21]

Dioxins (TCDD) Mammary tumor [116]

Vinclozolin Impaired male fertility [33]

Methoxychlor Impaired male fertility [117]

Phthalates Impairs male reproductive tract and testis [13]

TCDD, 2,3,7,8-Tetrachlorodibenzo-p-dioxin .
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affected by the overall reset in methylation patterns that
occur early in development [28]. Imprinted genes carry a
molecular memory of their parent of origin allele acquired
early in the germline [29]. This molecular memory is
associated with differential methylation patterns between
the two alleles, which affect monoallelic gene expression
[30]. These allelic differences in methylation are defined in
the developing embryo during the establishment of germ-
line development [28]. Methylation of imprinted genes
initiated during germline development can be completed
after fertilization [28,31]. Some imprinted genes remain
imprinted throughout the organism’s life; however, a group
of them are imprinted in specific tissues in a temporally
specific manner [32]. Interestingly, if external agents alter
DNA methylation in these imprinted genes or induce new
methylation sites during crucial periods of their establish-
ment, such changes can persist transgenerationally [33,34]
(Figure 2). This heritable transmission of environmentally
induced phenotypes is referred to as transgenerational
inheritance [1,35].

From a human health perspective, a number of disease
states exist that have an epigenetic origin. Several dis-
eases and syndromes have abnormal DNAmethylation or
imprinted gene sites leading to various pathologies [32].
These include Silver–Russell syndrome [36], Beckwith–

Weidemann syndrome [37], and Angelman and Prader–

Willi syndromes [38]. Another epigenetic disease caused
by abnormal DNA methylation of the X-chromosome is

fragile X syndrome [39]. Several brain disorders such as
autism, schizophrenia and Rett’s syndrome also appear to
have major epigenetic components [39–41]. Cancer also
has an epigenetic component to regulate genome
stability, and is associated with transformation and dis-
ease phenotype [42,43]. A growing list of diseases with an
epigenetic component suggests that epigenetics will have
a crucial role in disease etiology for many disease states
(Figure 1).

Epigenetics and environmental factors
Initial observations of how the environment can influence
epigenetics and phenotype were shown in plants [44]. In
animals, many examples associate environmental influ-
ences to epigenetic changes. Epigenetic influences have
been observed with environmental compounds, nutritional
factors [45,46] such as methyl donors (e.g. folate) [47,48],
inorganic contaminants such as arsenic [20,21], airborne
polycyclic aromatic hydrocarbons [49], drugs such as
cocaine [50], endocrine disruptors such as BPA
[14,51,52], phytoestrogens [53,54], and chemicals used as
fungicides [33] or pesticides [55] (Table 1). Some studies
have also demonstrated behavioral effects on DNA meth-
ylation including maternal effects on nursing behavior [56]
or depression [57]. Therefore, numerous examples of
environmental factors have been shown to alter the epi-
genome.

Holliday initially proposed a link between hormone
action and establishment of DNA methylation in mamma-
lian embryos. He proposed that maternal effects of terato-
gens might disrupt the normal distribution of DNA
methylation in a developing embryo, leading to develop-
mental abnormalities or defects that would appear in
successive generations [58]. McLachlan and collaborators
[59] proposed that exposure to environmental endocrine
disrupting chemicals during early development affects
adult stages, potentially involving gene imprinting and
leading to persistent genetic change at the level of DNA

Box 1. Epigenetics

The term ‘epigenetics’ was coined by Conrad Waddington in the

1940s. Waddington integrated the new knowledge about genes and

genetics to embryology. The study of embryological growth and

differentiation was commonly known as ‘epigenesis’, a concept that

had been around since Aristotelian times. The integration of the

concepts of epigenesis and genetics gave origin to the term

‘epigenetics’ [101,102]. Waddington’s goal with epigenetics was to

provide insight into gene–environment interactions that influence

development and embryology [101–103]. Pioneering epigenetic

experiments from Waddington on Drosophila demonstrated that a

temperature shock 17–23 hours after puparium formation produced

cross veinless wings in flies. Flies with this phenotype were culled from

the population and only those showing normal wings were used to

carry on the line. After an expected initial reduction of the cross

wingless phenotype in the population, it surprisingly recurred after

generation 16 [104]. This phenotype was considered a ‘genetic

assimilation’ and dealt with environmental exposures early in devel-

opment with subsequent consequences on phenotypic inheritance.

The definition of epigenetics has evolved with greater clarity of the

molecular mechanisms involved and a better understanding of

genetic phenomena. The initial definition of Waddington focused on

gene–environment interactions but had no molecular insights to

consider [102]. In 1990, Holliday defined epigenetics as ‘the study of

the mechanisms of temporal and spatial control of gene activity

during the development of complex organisms’. His definition

rescues Waddington’s original meaning of developmental biology,

although it does not differentiate between the action of what we

currently know as epigenetic mechanisms and the action of genetic

regulators of gene expression such as transcription factors [105].

Another early definition by Riggs and colleagues states that

epigenetics is ‘the study of mitotically and/or meiotically heritable

changes in gene function that cannot be explained by changes in DNA

sequence’ [106]. However, the term heritable is generally used in

reference to generational inheritance and is not associated with

growth of cells or tissues. Perhaps a more direct term would be

‘mitotically stable’. A more recent definition focuses on molecular

elements that influence chromatin, independent of DNA sequence.

Bird defines epigenetics as the ‘structural adaptation of chromosomal

regions so as to register, signal or perpetuate altered activity states’

[107]. Because there are several epigenetic elements that do not fit

into this definition such as non-coding RNA and minor modifications

of histones and DNA methylation of promoters, this definition

appears insufficiently global to encompass all of epigenetics. There-

fore, we propose a definition that is more global and encompasses all

molecular elements and includes the use of the term ‘epi’ for ‘around

DNA’. Thus, we define epigenetics as ‘molecular factors and

processes around DNA that are mitotically stable and regulate

genome activity independent of DNA sequence’.

Table 2. History of epigenetics

Year(s) Event

1940s Conrad Waddington defined epigenetics as environment–

gene interactions that induce developmental phenotypes

1975 Holliday and Pugh identify DNA methylation

1988 X-chromosome inactivation and DNA methylation

1990s Imprinted genes, allelic expression and DNA methylation

1995 Histone modifications and chromatin structure

2000s Small non-coding RNAs

2005 Epigenome mapping
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methylation. The first experimental evidence that endo-
crine-disrupting chemicals produce epigenetic changes
came from experiments in which neonatal exposure to
DES produced abnormalities in the demethylation of the
lactoferrin promoter [60].

A classic model for studying endocrine and nutritional
epigenetic effects is the Agouti mouse, which consists of
detecting changes in methylation of the Avy allele. Meth-
ylation in this meta-stable allele correlates with changes in
coat color, which shifts from yellow-agouti to yellow by
decreasing DNA methylation in the intracisternal A
particle retrotransposon upstream of the agouti gene
[47]. Maternal methyl donor (i.e. folate) consumption leads
to changes in the coat color of offspring, which correlates
with alteration in methylation of the Avy allele [47]. Inter-
estingly, transgenerational exposure of Avy/a mice to an ad
libitum diet produces amplification of obesity, an effect
that is suppressed when the diet is methyl-supplemented
with extra folate [61]. Maternal BPA treatment also
decreases the offspring’s CpG DNA methylation in this
metastable epiallele, resulting in a change in coat color
[51]. Dietary supplementation of BPA or genistein treat-
ments with methyl donors inhibits the hypomethylating
effect of BPA or genistein, shifting the coat color of hetero-
zygous yellow–agouti offspring toward pseudo-agouti,
which is the same coat color pattern observed in controls
[51]. This mouse model has clearly established the ability
of environmental factors to influence epigenetics to
promote phenotypic changes later in development.

Endocrine disruptors have the ability to alter the DNA
methylation patterns of key genes that produce related
transcriptional changes [1,7,62,63]. Administration of the
plant-derived endocrine-disrupting phytoestrogens, cou-

mestrol and equol, to newborn mice enhances DNA meth-
ylation to inactivate the proto-oncogene H-ras [64]. DNA
methylation patterns were altered in 8-week-old mice that
consumed high doses of the phytoestrogen genistein [65].
Recently, gender-specific changes in Acta1 methylation
have been shown to occur as a response to dietary isofla-
vones in mice [54]. Environmental compounds with endo-
crine disruptor activity tested for epigenetic effects include
the fungicide vinclozolin, the plastic residue BPA, and the
pharmacological compound DES (Table 1). Exposure to
environmentally relevant doses of BPA during the neo-
natal developmental period in rats produces DNA meth-
ylation changes associated with carcinogenic processes
[14]. Maternal exposure to BPA has also been shown to
alter methylation in the fetal mouse forebrain [52] and to
produce changes in behavior responses in the offspring
[66]. These findings correlate with other studies showing
epigenetic changes resulting from endocrine disruptor
exposure, which affected aspects of neuroendocrine sys-
tems [67] and behavioral neuroendocrinology [68–70].
Changes in methylation also explain the reappearance of
increased susceptibility for tumor formation in F2 gener-
ation mice after developmental exposure to DES [71,72].
Therefore, the actions of a number of endocrine disruptors
involve alterations in epigenetic processes.

The implication of these environmentally induced epi-
genetic effects in evolutionary biology is also a topic of
interest. An assumption of new-Darwinian theory is that
evolution proceeds based on random DNA sequence
mutations and that the environment is not able to alter
the occurrence or frequency of these mutations [73]. Epi-
genetics offers an alternative view regarding themolecular
mechanism involved. For example, DNA methylation of

Figure 2. Role of the germline in epigenetic transgenerational inheritance. (i) An environmental factor acts on the F0 generation gestating female to influence (ii) the

developing F1 generation fetus and alter gonadal development to reprogram the primordial germ cell DNA methylation. (iii) This altered DNA methylation in the germline

becomes permanently programmed, similar to an imprinted-like gene, and is transferred through the germline to subsequent generations. The embryo generated from this

germline starts with an altered epigenome that (iv) affects developing somatic cells and tissues to have an altered transcriptome. This altered somatic cell transcriptome can

then promote adult-onset disease associated with the transgenerational phenotype.
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CpG sites increases the rate of mutations of methylated
cytosines by an order of magnitude [74]. Therefore, in the
event of DNA methylation patterns being altered by an
environmental stimulus, these CpG sites will be more
prone to undergo mutations than will sites that are not
methylated [34]. If this is transgenerationally maintained
in a population, this is an epigenetically controlled
mutation frequency. This bias in the mutation rates over
generations is environmentally induced. Simulations in
the evolution of the BRCA1 gene show that methylation-
biased derived mutations are a feasible process [75].
Recent studies highlight the role of environmental com-
pounds on epigenetic mechanisms from an evolutionary
and ecological perspective [34,54,69,76].

Epigenetic transgenerational phenomena
Because the germline is required for transmitting genetic
information between generations, a permanent epigenetic
modification in it can result in transgenerational phenom-
ena (Box 2). Epigenetic programming of the germline
occurs during the migration of the primordial germ cells
in the embryo. The migrating primordial germ cells in the
genital ridge undergo an erasure of methylation of the
DNA during migration and colonize the early bipotential
gonad before gonadal sex determination [77,78]. Once
gonadal sex determination is initiated, the primordial
germ cells develop female or male germ cell lineage and
remethylate the DNA in amale- or female-specificmanner.
Therefore, the germ cell epigenetic programming during
gonadal sex determination is a period sensitive to environ-
mental factors [77] (Box 3).

Although there are alterations in the male and female
germline epigenomes (i.e. DNAmethylation) during game-
togenesis in the adult gonads [79], the embryonic period of
gonadal sex determination is themost sensitive to environ-
mental insults. During spermatogenesis, the male germ
cell replaces the majority of histones with protamines,
DNA condensation occurs to eliminate chromatin struc-
ture, and the genome is silenced for reduced expression of
non-coding RNAs [80]. Although a small percentage of
histones are maintained in developmentally important loci
[81], the role of histones in sperm remains to be estab-
lished. Therefore, the primary epigenetic process that is

transmitted through the male germline is DNA methyl-
ation.

One of the first studies to demonstrate the ability of an
environmental factor to modify the epigenetic program-
ming of the male germline used the endocrine disruptor
vinclozolin. When embryonic rats were exposed through
maternal administration to vinclozolin, an anti-androgenic
environmental endocrine disruptor, during gonadal sex
determination, adult-onset disease occurred in the first
generation and persisted for four subsequent generations
[33] (Figure 2). This phenomenon was found to be caused
by male germline changes in DNA methylation, which
resulted in heritable changes in transcription in several
tissues, such as the testis [82], brain [70] and prostate [83].
The pathology of adult-onset disease from vinclozolin
exposure during embryonic life included testicular, pros-
tate and renal abnormalities, and increased the incidence
of tumors [33,84,85]. A modification of the sperm epigen-
ome appears to have occurred following vinclozolin
exposure at the time of gonadal sex determination, which
enabled transgenerational transmission to subsequent
generations to promote adult-onset disease [1]
(Figure 2). This was one of the first reports of an environ-
mental factor promoting epigenetic transgenerational
inheritance.

A follow-up study by a company that produces vinclo-
zolin (BASF, Ludwigshafen, Germany) found that oral
administration of the same dose used intraperitoneally
(IP) [33] did not have transgenerational effects nor major
effects in the F1 generation [86]. Previously, we found that
a fourfold decrease in the dose eliminated the vinclozolin
effect [84]. For most compounds, oral gavage treatment
generally has a circulating dose an order of magnitude
lower than an intraperitoneal injection, thus the lack of
effect was probably a result of insufficient dosing [33].
Regarding toxicology, this study suggests that vinclozolin
might not be a significant risk factor at the dose used [86].
However, in our studies, we used vinclozolin as a pharma-
cologic agent to promote the transgenerational phenotype
and to study its mechanism [33], and did not perform risk
assessment or classic toxicology experiments. A second

Box 2. Definition of transgenerational phenotype

Most of the actions of environmental factors or toxicants involve

direct exposure of somatic tissues that are important for the

exposed individual’s disease, but will not be transmitted to the next

generation. By contrast, transgenerational phenotypes and toxicol-

ogy by definition excludes direct exposure and must be transmitted

through several generations [1,108]. For example, exposure of a

gestating female provides direct exposure of the F0 generation

female, the F1 generation embryo, and the germline that will

generate the F2 generation [108]. Therefore, a phenotype in the F3

generation is required to have a transgenerational phenomenon or

phenotype. The effects observed in the F0 and F1 generations are

caused by direct exposure, as is that in the F2 generation germline

[1,108]. The ability of a direct exposure to influence several

generations is defined as a multiple generation phenotype and not

a transgenerational phenotype. By contrast, a transgenerational

phenotype requires the absence of a direct exposure and transmis-

sion of the phenotype to at least the F3 generation [108].

Box 3. Germ cell developmental epigenetics

An important factor to consider with a transgenerational phenotype

is the action of environmental factors on the germline and gonadal

development. During embryonic development in mammalian

species, the primordial germ cells migrate down the genital ridge

towards the developing gonad before sex determination occurs

[77,78,109]. At the time of gonadal sex determination, the germ cell

develops into a male or female germ cell lineage at the initial stages

of gonadal sex determination. The female germline then enters

meiosis in the developing embryonic ovary, whereas male germ

cells continue to proliferate until immediately before birth and then

resume proliferation after birth until puberty [77,78,109]. In the

adult, the female germline undergoes oogenesis during follicle

development to generate oocytes. The male germline, in turn,

develops from spermatogonial stem cells and undergoes sperma-

togenesis for the production of spermatozoa in the testis. The crucial

period for epigenetic regulation and modification of the germline is

during the period of primordial germ cell migration and gonadal sex

determination. The permanent alteration in the epigenetic program-

ming of the germline appears to be the mechanism involved in the

transgenerational phenotype [1,33].
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study repeated the vinclozolin experiment [87] using a
more inbred CD–Sprague Dawley (Charles River) rat line
versus the outbred Harlan Sprague Dawley line [33]. This
study did not obtain a dramatic transgenerational pheno-
type [87]. Previously, we reported that the inbred Fisher
rat line did not respond as well as the outbred Harlan
Sprague Dawley line [33,84], and we have recently found
the CD–SpragueDawley response is also not as robust. The
hypothesis is proposed that the inbred status of the line
might be a factor in the efficiency of promoting the phe-
notype. We recently repeated the original observation [33]
with the outbred Harlan Sprague Dawley line [88]. In
addition to the outbred status of the line, we found the
exposure timing and duration to be crucial. The
parameters required to obtain the transgenerational phe-
notype should help to reveal aspects of the mechanisms
involved. Several other recent studies confirm the ability of
environmental agents to promote transgenerational phe-
notypes [89], and a recent independent study confirmed the
epigenetic transgenerational actions of vinclozolin [90].

Several epigenetic transgenerational phenomena and
phenotypes have since been observed in various species
and with various environmental factors involved (Table 3).
The first non-mendelian hereditary phenomenon reported
in plants was called paramutation [44] and later this
transgenerational phenomenon was found to be epigenetic
in nature and controlled by DNA methylation [91]. This
event was also observed in mammals, with a similar mode
of inheritance found in mice [92,93]. Nutrition also pro-
motes a transgenerational adult-onset obesity phenotype,
as described in the Agouti mouse model [61], and there is
also documentation of transgenerational responses to
nutrition in humans [94]. A transgenerational mechanism
exists that appears to capture an alteration in nutrition in
a sensitive period of perinatal development from the
previous generation(s). This requires a mechanism for
transmitting the change in environmental exposure (epi-
genetic) that then alters gene expression and phenotype in

the next generation (Figure 2). A nutritionally induced
transgenerational response has been observed down the
male line, and implies that the sperm carries the ancestral
exposure information. A study by Arai et al. [95] demon-
strated the ability of an animal’s environment to modulate
the signaling network that promotes long-term poten-
tiation (LTP) in the hippocampus and to improve contex-
tual fear memory formation across generations. In
addition, environment also enhances LTP in their future
offspring through adolescence, even if the offspring are not
exposed. Stress-induced maternal programming also pro-
motes behavioral changes transgenerationally [96,97].

Heritable disease states such as multiple sclerosis (MS)
also appear to have an epigenetic origin [98]. Epigenetic
modifications differentiate among human leukocyte anti-
gen class II risk haplotypes and are involved in the gender
bias in MS [98]. Processes such as embryonic stem cell
culture to generate spermatogonial stem cells have been
shown to epigenetically alter the germline and promote
abnormalities transgenerationally (F0–F4) in mice [99]. As
discussed, environmental toxicants such as vinclozolin [33]
and the plastic component BPA promote transgenerational
disease. The plasticizer BPA also promotes testicular dis-
ease fromF1 to F3 generations in rats [89]. Further studies
(Box 4) are required to determine the crucial time of
exposure of environmental toxicants, and to identify fac-
tors that result in germline-transmitted adult-onset dis-
eases and those that have an epigenetic basis.

Concluding remarks
Epigenetic transgenerational phenomena generally
require the involvement of the germline to allow the trans-
mission of an epigenetic abnormality down several gener-
ations. The ability of environmental factors or toxicants to
alter the epigenome will be common in somatic tissues, but
is less common for the germline because of the limited
developmental period it is sensitive to reprogramming. In
the event of an altered germline epigenome becoming
permanently programmed, an epigenetic transgenera-
tional phenotype is possible (Figure 2).

The phenomenon of the fetal basis of adult-onset disease
has been established [1,100], and epigenetics probably
plays a crucial role in this process. Transient early life
exposures in the exposed individual, or transgenerational
exposures if the germline is involved, are now included as
causal factors for adult-onset disease. Further investi-
gation into the role of epigenetics in disease etiology is

Table 3. Epigenetic transgenerational events

Epigenetic transgenerational event, environmental

factor and generation

Reference

Paramutation in maize [118]

Modification of plant color (F1–F2)

Paramutation in Arabidopsis (F1–F4) [91]

Epigenetic (paramutation) non-mendelian change in

mouse (F1–F6)

[92,93]

Vinclozolin-induced epigenetic transgenerational

adult-onset disease in rat (F1–F4)

[33,86]

BPA-induced transgenerational testicular abnormality

(F1–F3)

[89]

Transgenerational promotion of long term potentiation [95]

(F1–F2) by altered environment

Stress-induced behavior alterations (F0–F2) [96]

Nutrition-induced transgenerational obesity in mice

(F1–F3)

[61]

Transgenerational response in longevity to nutrition

(F0–F2)

[94]

Gender bias in multiple sclerosis following [98]

epigenetic changes in HLA class III risk haplotypes

(F1–F2)

Tumor susceptibility in Drosophila (F1–F3) [119]

Stem cell culture-induced adult-onset disease (F0–F4) [99]

Box 4. Future questions and considerations

� The epigenetic and genetic mechanisms of how the germline

epigenome becomes permanently programmed to transmit a

transgenerational phenotype need to be determined.

� A correlation of epigenetic biomarkers with disease needs to be

assessed for the potential future development of early stage

diagnosis of disease.

� A correlation of epigenetic biomarkers with environmental

exposures is needed to develop advanced risk and toxicology

assessments.

� The paradigm that genetics is the primary molecular mechanism

involved in biology and medicine needs to be modified to

incorporate epigenetics as a crucial regulatory factor as well.
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needed to determine how important early life toxicology is
to disease. Elucidating the epigenetic mechanisms
involved in transgenerational toxicology will provide
insights into the diagnosis of environmental exposures
and provide potential therapeutic targets for disease.
Although the prevalence of epigenetic transgenerational
inheritance needs to be assessed in various disease states,
the role of epigenetics is likely to be a major factor to
consider in toxicology and medicine in the future.

Endocrine disruptors are one of the most prevalent
groups of environmental compounds we are exposed to
daily. Although these compounds disrupt the endocrine
system, it is the long-term response of molecular processes
such as epigenetics that will promote downstream devel-
opmental events and adult-onset disease (Figure 1). Elu-
cidation of the role of epigenetics in endocrine disruptor
actions and in the etiology of disease will undoubtedly
provide insights into diagnostics and therapeutics for
environmental exposures, risk assessment and adult-onset
disease (Box 4). In addition to these abnormal endocrine
disrupting agents, it is likely that epigenetics will also be
essential to consider in normal endocrinology and meta-
bolic events.
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